
§14.1 VECTOR FUNCTIONS

§14.1 Vector Functions

After completing this section, students should be able to:

• Define a vector valued function.

• Find the domain of a vector valued function.

• Find the limit of a vector valued function.

• Match equations of vector valued functions with their graphs by considering the
projections of the graphs onto the xy, yz, and xz planes.

• Give a vector valued equation for the intersection of two surfaces.
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§14.1 VECTOR FUNCTIONS

Definition. A vector function or vector-valued function is:

If we think of the vectors as position vectors with their initial points at the origin, then
the endpoints of ~v(t) trace out a in R3 (or in R2).

86



§14.1 VECTOR FUNCTIONS

Example. Sketch the curve defined by the vector function ~r(t) =< t, sin(5t), cos(5t) >.
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§14.1 VECTOR FUNCTIONS

Example. Consider the vector function ~r(t) =
t
2 � t

t � 1
~i +
p

t + 8~j +
sin(⇡t)

ln t

~k

1. What is the domain of ~r(t)?

2. Find lim
t!1
~r(t)

3. Is ~r(t) continuous on (0,1)? Why or why not?

END OF VIDEO
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§14.1 VECTOR FUNCTIONS

Review. Which of these are vector functions?

A. f (t)) = t
2

B. f (s, t) = 3x � 4t

C. f (t) = t
2~i � 2t~j +

p
t~k
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§14.1 VECTOR FUNCTIONS

Review. Match the vector functions with the curves.

1. ~r1(t) =< t
2, t4, t6 >

2. ~r2(t) =< t + 2, 3 � t, 2t � 1 >

3. ~r3(t) =< cos(t),� cos(t), sin(t) >

4. ~r4(t) =< t, t2, t3 >

5. ~r5(t) =< cos(t), sin(t), t >

6. ~r6(t) =< cos(t), sin(t), cos(2t) >
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§14.1 VECTOR FUNCTIONS

Example. Consider the vector function ~r(t) = te
�t~i +

t
3 + t

2t3 � 1
~j +

1p
t

~k

1. What is the domain of ~r(t)?

2. Find lim
t!1
~r(t)
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§14.1 VECTOR FUNCTIONS

Example. Find the point on the curve~r(t) = 5 cos(t)~i+3 sin(t)~j+4 sin(t)~k that lies closest
to the point P(1, 1, 2).
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§14.1 VECTOR FUNCTIONS

Example. At what points does the helix ~r(t) =< sin(t), cos(t), t > intersect the sphere
x

2 + y
2 + z

2 = 5?
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§14.1 VECTOR FUNCTIONS

Example. Show that the curve~r(t) = 3 cos(t)~i+9 cos(2t)~j+3 sin(t)~k lies on the intersection
of the hyperboloid y = x

2 � z
2 and the cylinder x

2 + z
2 = 9.

94



§14.1 VECTOR FUNCTIONS

Extra Example. Find a function ~r(t) that describes the curve where the following sur-
faces intersect.

z = 3x
2 + y

2 + 1, z = 5 � x
2 � 3y

2
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§14.1 VECTOR FUNCTIONS

Extra Example. Find the curve where the following surfaces intersect.

x
2 + y

2 = 25, z = 2x + 2y
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§14.1 VECTOR FUNCTIONS

Extra Example. Find the curve where the following surfaces intersect.

z = y + 1, z = x
2 + 1
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Extra Example. §14.2 Derivatives and Integrals of Vector Functions

By the end of this section, students should be able to:

• Compute the derivative of a vector function.

• Compute the integral of a vector function.

• When ~r(t) represents the position of a particle at time t, explain the meaning of
~r0(t), its direction, and its magnitude.
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Suppose a particle is moving according to the vector equation ~r(t). How can we find a
tangent vector that gives the direction and speed that the particle is traveling?
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Definition. The derivative of the vector function ~r(t) is the same thing as the tangent
vector, defined as

d~r
dt
= ~r 0(t) =

If ~r(t) =< r1(t), r2(t), r3(t) >, then

~r 0(t) =

The derivative of a vector function is a (circle one) vector / scalar.

The unit tangent vector is:
~T(t) =

The tangent line at t = a is:
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Example. For the vector function ~r(t) =< t
2, t3 >

1. Find ~r 0(1).

2. Sketch ~r(t) and ~r 0(1).

3. Find ~T(1).

4. Find the equation for the tangent line at t = 1.
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Definition. If ~r(t) =< f (t), g(t), h(t) >, then

Z
~r(t) dt =

and

Z
b

a

~r(t) dt =
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Example. Compute
Z 2

1

1
t

~i + e
t~j + te

t~k.

END OF VIDEO
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Review. If ~r(t) = 5t
2~i + sin(t)~j � 3~k, how do we compute ~r 0(t)?

Question. For a vector function ~r(t) =< r1(t), r2(t), r3(t) >, what is the limit definition of
~r 0(t)?
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Question. (Geometric interpretation) If we think of ~r(t) as a space curve, what does
~r 0(t) represent geometrically?

Question. (Physics interpretation) If ~r(t) represents the position of a particle at time t,

(a) what does the direction of ~r 0(t) signify?

(b) what does the magnitude of ~r 0(t) signify?

Note. The unit tangent vector is computed as and sometimes denoted
by .
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Example. Find the tangent vector, the unit tangent vector, and the tangent line for the
following curves at the point given

1. ~r(t) =< t, t2, t3 > at t = 1

2. ~r(t) =< t
2, t4, t6 > at t = 1

3. ~p(t) =< t + 2, 3 � t, 2t � 1 > at t = 0
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Example. At what point do the curves ~r1(t) =< t, 1�t, 3+t
2 > and ~r2(t) =< 3�t, t�2, t2 >

intersect? Find their angle of intersection correct to the nearest degree.
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Derivative rules - see textbook

• Is there a product rule for derivatives of vector functions?

• Is there a quotient rule for derivatives of vector functions?

• Is there a chain rule for derivatives of vector functions?
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Example. Show that if ||~r(t)|| = c (a constant), then ~r 0(t) is orthogonal to ~r(t) for all t.
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Review. If ~r(t) =< f (t), g(t), h(t) >, then

Z
~r(t) dt =

and

Z
b

a

~r(t) dt =

Example. Find ~p(t) if ~p 0(t) = cos(⇡t)~i + sin(⇡t)~j + t~k and ~p(1) = 6~i + 6~j + 6~k.
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§14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Extra Example. Show that if ~r is a vector function such that ~r 00 exists, then

d

dt
[~r(t) ⇥ ~r 0(t)] = ~r(t) ⇥ ~r 00(t)

Extra Example. If ~u(t) = ~r(t) � [~r 0(t) ⇥ ~r 00(t)], show that

~u 0(t) = ~r(t) · [~r 0(t) ⇥ ~r 000(t)]

111



§14.4 ARCLENGTH

§14.4 Arclength

After completing this section, students should be able to:

• Set up an intergral to represent the arclength of a curve, and compute the integral
when it simplifies nicely.

• Explain what it means for a curve to be parametrized by arclength.

• Reparametrize curves so that they are parametrized by arclength.
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§14.4 ARCLENGTH

Example. Find the length of this curve.
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§14.4 ARCLENGTH

Note. In general, it is possible to approximate the length of a curve x = f (t), y = g(t)
between t = a and t = b by dividing it up into n small pieces and approximating each
curved piece with a line segment.

Arc length is given by the formula:
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§14.4 ARCLENGTH

Set up an integral to express the arclength of the Lissajous figure

x = cos(t), y = sin(2t)

.
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§14.4 ARCLENGTH

Review. To find the arc length of a space curve ~r(t) =< f (t), g(t), h(t) >, we can approx-
imate it with straight line segments.

Note. The arc length of a curve ~r(t) =< x(t), y(t), z(t) > between t = a and t = b is given
by
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§14.4 ARCLENGTH

Definition. The arc length function (starting at t = a) is

s(t) =

Note. If s(t) is the arc length function, then s
0(t) =

In words, this says that the rate of change of the arclength with respect to time is ...
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§14.4 ARCLENGTH

Example. Consider the two curves:

1. ~r(u) =< 2u,u2, 1
3u

3 > for 0  u  1

2. ~q(t) =< 2 ln(t), (ln(t))2, 1
3(ln(t))3 > for 1  t  e

How are the curves related?

We say that ~q(t) is a reparametrization of ~r(u) because:

Also ~r(u) is a reparametrization of ~q(t) because:

You can think of a reparametrization of a curve as the same curve, traveled at a di↵erent
speed. In our case, ~q moves along the curve (circle one) slower / faster than ~r.

In mathematical notation, ~q(t) is a reparametrization of ~r(u) if ~q(t) = ~r(�(t)) for some
strictly increasing (and therefore invertible) function u = �(t).
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§14.4 ARCLENGTH

Find the arc length of each curve.

~r(u) =< 2u,u2,
1
3

u
3 >

for 0  u  1
~q(t) =< 2 ln(t), (ln(t))2,

1
3

(ln(t))3 >

for 1  t  e
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§14.4 ARCLENGTH

Fact. Arc length does not depend on parametrization.

Proof:

Is there a natural, best way to parametrize a curve?
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§14.4 ARCLENGTH

Definition. We say that a curve ~r(t) is parametrized by arclength if ....

Note. If the curve ~r(t) is parametrized by arclength then ...

Note. If ||~r 0(t)|| = 1 for all t, then ...
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§14.4 ARCLENGTH

Example. Reparametrize by arc length:

~p(t) = 3 sin(t)~i + 4t~j + 3 cos(t)~k
for t � 0
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§14.4 ARCLENGTH

Example. Reparametrize by arc length:

~r(t) = e
3t~i + e

3t~j + 3~k
for t � 0
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