§14.1 Vector Functions

After completing this section, students should be able to:

- Define a vector valued function.
- Find the domain of a vector valued function.
- Find the limit of a vector valued function.
- Match equations of vector valued functions with their graphs by considering the projections of the graphs onto the $x y, y z$, and $x z$ planes.
- Give a vector valued equation for the intersection of two surfaces.

Definition. A vector function or vector-valued function is:

If we think of the vectors as position vectors with their initial points at the origin, then the endpoints of $\vec{v}(t)$ trace out a \qquad in \mathbb{R}^{3} (or in \mathbb{R}^{2}).

Example. Sketch the curve defined by the vector function $\vec{r}(t)=\langle t, \sin (5 t), \cos (5 t)\rangle$.

Example. Consider the vector function $\vec{r}(t)=\frac{t^{2}-t}{t-1} \vec{i}+\sqrt{t+8} \vec{j}+\frac{\sin (\pi t)}{\ln t} \vec{k}$

1. What is the domain of $\vec{r}(t)$?
2. Find $\lim _{t \rightarrow 1} \vec{r}(t)$
3. Is $\vec{r}(t)$ continuous on $(0, \infty)$? Why or why not?

Review. Which of these are vector functions?
A. $f(t))=t^{2}$
B. $f(s, t)=3 x-4 t$
C. $f(t)=t^{2} \vec{i}-2 t \vec{j}+\sqrt{t} \vec{k}$

Review. Match the vector functions with the curves.

1. $\overrightarrow{r_{1}}(t)=<t^{2}, t^{4}, t^{6}>$
2. $\overrightarrow{r_{2}}(t)=\langle t+2,3-t, 2 t-1>$
3. $\overrightarrow{r_{4}}(t)=\left\langle t, t^{2}, t^{3}>\right.$
4. $\overrightarrow{r_{5}}(t)=<\cos (t), \sin (t), t>$
5. $\overrightarrow{r_{3}}(t)=<\cos (t),-\cos (t), \sin (t)>$
6. $\overrightarrow{r_{6}}(t)=<\cos (t), \sin (t), \cos (2 t)>$

Example. Consider the vector function $\vec{r}(t)=t e^{-t} \vec{i}+\frac{t^{3}+t}{2 t^{3}-1} \vec{j}+\frac{1}{\sqrt{t}} \vec{k}$

1. What is the domain of $\vec{r}(t)$?
2. Find $\lim _{t \rightarrow \infty} \vec{r}(t)$

Example. Find the point on the curve $\vec{r}(t)=5 \cos (t) \vec{i}+3 \sin (t) \vec{j}+4 \sin (t) \vec{k}$ that lies closest to the point $P(1,1,2)$.

Example. At what points does the helix $\vec{r}(t)=<\sin (t), \cos (t), t>$ intersect the sphere $x^{2}+y^{2}+z^{2}=5$?

Example. Show that the curve $\vec{r}(t)=3 \cos (t) \vec{i}+9 \cos (2 t) \vec{j}+3 \sin (t) \vec{k}$ lies on the intersection of the hyperboloid $y=x^{2}-z^{2}$ and the cylinder $x^{2}+z^{2}=9$.

Extra Example. Find a function $\vec{r}(t)$ that describes the curve where the following surfaces intersect.
$z=3 x^{2}+y^{2}+1, z=5-x^{2}-3 y^{2}$

Extra Example. Find the curve where the following surfaces intersect.
$x^{2}+y^{2}=25, z=2 x+2 y$

Extra Example. Find the curve where the following surfaces intersect.
$z=y+1, z=x^{2}+1$

Extra Example. §14.2 Derivatives and Integrals of Vector Functions

By the end of this section, students should be able to:

- Compute the derivative of a vector function.
- Compute the integral of a vector function.
- When $\vec{r}(t)$ represents the position of a particle at time t, explain the meaning of $\vec{r}(t)$, its direction, and its magnitude.

Suppose a particle is moving according to the vector equation $\vec{r}(t)$. How can we find a tangent vector that gives the direction and speed that the particle is traveling?

Definition. The derivative of the vector function $\vec{r}(t)$ is the same thing as the tangent vector, defined as

$$
\frac{d \vec{r}}{d t}=\vec{r}^{\prime}(t)=
$$

If $\vec{r}(t)=<r_{1}(t), r_{2}(t), r_{3}(t)>$, then

$$
\vec{r}^{\prime}(t)=
$$

The derivative of a vector function is a (circle one) vector / scalar.

The unit tangent vector is:
$\vec{T}(t)=$

The tangent line at $t=a$ is:

Example. For the vector function $\vec{r}(t)=<t^{2}, t^{3}>$

1. Find $\vec{r}^{\prime}(1)$.
2. Sketch $\vec{r}(t)$ and $\vec{r}^{\prime}(1)$.
3. Find $\vec{T}(1)$.
4. Find the equation for the tangent line at $t=1$.

Definition. If $\vec{r}(t)=<f(t), g(t), h(t)>$, then

$$
\int \vec{r}(t) d t=
$$

and

$$
\int_{a}^{b} \vec{r}(t) d t=
$$

Example. Compute $\int_{1}^{2} \frac{1}{t} \vec{i}+e^{t} \vec{j}+t e^{t} \vec{k}$.

Review. If $\vec{r}(t)=5 t^{2} \vec{i}+\sin (t) \vec{j}-3 \vec{k}$, how do we compute $\vec{r}^{\prime}(t)$?

Question. For a vector function $\vec{r}(t)=<r_{1}(t), r_{2}(t), r_{3}(t)>$, what is the limit definition of $\vec{r}^{\prime}(t)$?

Question. (Geometric interpretation) If we think of $\vec{r}(t)$ as a space curve, what does $\vec{r}^{\prime}(t)$ represent geometrically?

Question. (Physics interpretation) If $\vec{r}(t)$ represents the position of a particle at time t,
(a) what does the direction of $\vec{r}^{\prime}(t)$ signify?
(b) what does the magnitude of $\vec{r}^{\prime}(t)$ signify?

Note. The unit tangent vector is computed as \qquad and sometimes denoted by \qquad .

Example. Find the tangent vector, the unit tangent vector, and the tangent line for the following curves at the point given

1. $\vec{r}(t)=<t, t^{2}, t^{3}>$ at $t=1$
2. $\vec{r}(t)=<t^{2}, t^{4}, t^{6}>$ at $t=1$
3. $\vec{p}(t)=<t+2,3-t, 2 t-1>$ at $t=0$

Example. At what point do the curves $\overrightarrow{r_{1}}(t)=<t, 1-t, 3+t^{2}>$ and $\overrightarrow{r_{2}}(t)=\left\langle 3-t, t-2, t^{2}\right\rangle$ intersect? Find their angle of intersection correct to the nearest degree.

Derivative rules - see textbook

- Is there a product rule for derivatives of vector functions?
- Is there a quotient rule for derivatives of vector functions?
- Is there a chain rule for derivatives of vector functions?

Example. Show that if $\|\vec{r}(t)\|=c$ (a constant), then $\vec{r}^{\prime}(t)$ is orthogonal to $\vec{r}(t)$ for all t.

Review. If $\vec{r}(t)=<f(t), g(t), h(t)>$, then

$$
\int \vec{r}(t) d t=
$$

and

$$
\int_{a}^{b} \vec{r}(t) d t=
$$

Example. Find $\vec{p}(t)$ if $\vec{p}^{\prime}(t)=\cos (\pi t) \vec{i}+\sin (\pi t) \vec{j}+t \vec{k}$ and $\vec{p}(1)=6 \vec{i}+6 \vec{j}+6 \vec{k}$.

Extra Example. Show that if \vec{r} is a vector function such that $\vec{r}^{\prime \prime}$ exists, then

$$
\frac{d}{d t}\left[\vec{r}(t) \times \vec{r}^{\prime}(t)\right]=\vec{r}(t) \times \vec{r}^{\prime \prime}(t)
$$

Extra Example. If $\vec{u}(t)=\vec{r}(t) \circ\left[\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right]$, show that

$$
\vec{u}^{\prime}(t)=\vec{r}(t) \cdot\left[\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime \prime}(t)\right]
$$

§14.4 Arclength

After completing this section, students should be able to:

- Set up an intergral to represent the arclength of a curve, and compute the integral when it simplifies nicely.
- Explain what it means for a curve to be parametrized by arclength.
- Reparametrize curves so that they are parametrized by arclength.

Example. Find the length of this curve.

Note. In general, it is possible to approximate the length of a curve $x=f(t), y=g(t)$ between $t=a$ and $t=b$ by dividing it up into n small pieces and approximating each curved piece with a line segment.

Arc length is given by the formula:

Set up an integral to express the arclength of the Lissajous figure

$$
x=\cos (t), y=\sin (2 t)
$$

Review. To find the arc length of a space curve $\vec{r}(t)=<f(t), g(t), h(t)>$, we can approximate it with straight line segments.

Note. The arc length of a curve $\vec{r}(t)=<x(t), y(t), z(t)>$ between $t=a$ and $t=b$ is given by

Definition. The arc length function (starting at $t=a$) is

$$
s(t)=
$$

Note. If $s(t)$ is the arc length function, then $s^{\prime}(t)=$

In words, this says that the rate of change of the arclength with respect to time is ...

Example. Consider the two curves:

1. $\vec{r}(u)=<2 u, u^{2}, \frac{1}{3} u^{3}>$ for $0 \leq u \leq 1$
2. $\vec{q}(t)=<2 \ln (t),(\ln (t))^{2}, \frac{1}{3}(\ln (t))^{3}>$ for $1 \leq t \leq e$

How are the curves related?

We say that $\vec{q}(t)$ is a reparametrization of $\vec{r}(u)$ because:

Also $\vec{r}(u)$ is a reparametrization of $\vec{q}(t)$ because:

You can think of a reparametrization of a curve as the same curve, traveled at a different speed. In our case, \vec{q} moves along the curve (circle one) slower / faster than \vec{r}. In mathematical notation, $\vec{q}(t)$ is a reparametrization of $\vec{r}(u)$ if $\vec{q}(t)=\vec{r}(\phi(t))$ for some strictly increasing (and therefore invertible) function $u=\phi(t)$.

Find the arc length of each curve.
$\vec{r}(u)=<2 u, u^{2}, \frac{1}{3} u^{3}>$
for $0 \leq u \leq 1$
$\vec{q}(t)=<2 \ln (t),(\ln (t))^{2}, \frac{1}{3}(\ln (t))^{3}>$
for $1 \leq t \leq e$

Fact. Arc length does not depend on parametrization.
Proof:

Is there a natural, best way to parametrize a curve?

Definition. We say that a curve $\vec{r}(t)$ is parametrized by arclength if

Note. If the curve $\vec{r}(t)$ is parametrized by arclength then ...

Note. If $\left\|\vec{r}^{\prime}(t)\right\|=1$ for all t, then...

Example. Reparametrize by arc length:
$\vec{p}(t)=3 \sin (t) \vec{i}+4 t \vec{j}+3 \cos (t) \vec{k}$
for $t \geq 0$

Example. Reparametrize by arc length:
$\vec{r}(t)=e^{3 t} \vec{i}+e^{3 t} \vec{j}+3 \vec{k}$
for $t \geq 0$

