§14.1 Vector Functions

After completing this section, students should be able to:

- Define a vector valued function.
- Find the domain of a vector valued function.
- Find the limit of a vector valued function.
- Match equations of vector valued functions with their graphs by considering the projections of the graphs onto the *xy*, *yz*, and *xz* planes.
- Give a vector valued equation for the intersection of two surfaces.

Definition. A vector function or vector-valued function is:

If we think of the vectors as position vectors with their initial points at the origin, then the endpoints of $\vec{v}(t)$ trace out a _____ in \mathbb{R}^3 (or in \mathbb{R}^2).

Example. Sketch the curve defined by the vector function $\vec{r}(t) = \langle t, \sin(5t), \cos(5t) \rangle$.

Example. Consider the vector function
$$\vec{r}(t) = \frac{t^2 - t}{t - 1}\vec{i} + \sqrt{t + 8}\vec{j} + \frac{\sin(\pi t)}{\ln t}\vec{k}$$

1. What is the domain of $\vec{r}(t)$?

2. Find $\lim_{t \to 1} \vec{r}(t)$

3. Is $\vec{r}(t)$ continuous on $(0, \infty)$? Why or why not?

END OF VIDEO

Review. Which of these are vector functions?

A. $f(t) = t^{2}$ B. f(s, t) = 3x - 4tC. $f(t) = t^{2}\vec{i} - 2t\vec{j} + \sqrt{t}\vec{k}$ **Review.** Match the vector functions with the curves.

Example. Consider the vector function $\vec{r}(t) = te^{-t}\vec{i} + \frac{t^3 + t}{2t^3 - 1}\vec{j} + \frac{1}{\sqrt{t}}\vec{k}$

1. What is the domain of $\vec{r}(t)$?

2. Find $\lim_{t\to\infty} \vec{r}(t)$

Example. Find the point on the curve $\vec{r}(t) = 5\cos(t)\vec{i} + 3\sin(t)\vec{j} + 4\sin(t)\vec{k}$ that lies closest to the point P(1, 1, 2).

Example. At what points does the helix $\vec{r}(t) = <\sin(t), \cos(t), t >$ intersect the sphere $x^2 + y^2 + z^2 = 5$?

Example. Show that the curve $\vec{r}(t) = 3\cos(t)\vec{i}+9\cos(2t)\vec{j}+3\sin(t)\vec{k}$ lies on the intersection of the hyperboloid $y = x^2 - z^2$ and the cylinder $x^2 + z^2 = 9$.

Extra Example. Find a function $\vec{r}(t)$ that describes the curve where the following surfaces intersect.

 $z = 3x^2 + y^2 + 1, z = 5 - x^2 - 3y^2$

Extra Example. Find the curve where the following surfaces intersect.

 $x^2 + y^2 = 25, z = 2x + 2y$

Extra Example. Find the curve where the following surfaces intersect. $z = y + 1, z = x^2 + 1$

Extra Example. §14.2 Derivatives and Integrals of Vector Functions

By the end of this section, students should be able to:

- Compute the derivative of a vector function.
- Compute the integral of a vector function.
- When $\vec{r}(t)$ represents the position of a particle at time *t*, explain the meaning of $\vec{r}'(t)$, its direction, and its magnitude.

Suppose a particle is moving according to the vector equation $\vec{r}(t)$. How can we find a *tangent vector* that gives the direction and speed that the particle is traveling?

Definition. The *derivative* of the vector function $\vec{r}(t)$ is the same thing as the tangent vector, defined as

$$\frac{d\vec{r}}{dt} = \vec{r}'(t) =$$

If $\vec{r}(t) = \langle r_1(t), r_2(t), r_3(t) \rangle$, then

$$\vec{r}'(t) =$$

The derivative of a vector function is a (circle one) vector / scalar.

The **unit tangent vector** is: $\vec{T}(t) =$

The **tangent line** at t = a is:

Example. For the vector function $\vec{r}(t) = \langle t^2, t^3 \rangle$

- 1. Find $\vec{r}'(1)$.
- 2. Sketch $\vec{r}(t)$ and $\vec{r}'(1)$.
- 3. Find $\vec{T}(1)$.
- 4. Find the equation for the tangent line at t = 1.

Definition. If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, then

$$\int \vec{r}(t) \, dt =$$

and

$$\int_a^b \vec{r}(t) \, dt =$$

Example. Compute
$$\int_{1}^{2} \frac{1}{t}\vec{i} + e^{t}\vec{j} + te^{t}\vec{k}$$
.

END OF VIDEO

Review. If $\vec{r}(t) = 5t^2\vec{i} + \sin(t)\vec{j} - 3\vec{k}$, how do we compute $\vec{r}'(t)$?

Question. For a vector function $\vec{r}(t) = \langle r_1(t), r_2(t), r_3(t) \rangle$, what is the limit definition of $\vec{r}'(t)$?

Question. (Geometric interpretation) If we think of $\vec{r}(t)$ as a space curve, what does $\vec{r}'(t)$ represent geometrically?

Question. (Physics interpretation) If $\vec{r}(t)$ represents the position of a particle at time *t*, (a) what does the direction of $\vec{r'}(t)$ signify?

(b) what does the magnitude of $\vec{r}'(t)$ signify?

Note. The *unit tangent vector* is computed as ______ and sometimes denoted by ______.

Example. Find the tangent vector, the unit tangent vector, and the tangent line for the following curves at the point given

1. $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ at t = 1

```
2. \vec{r}(t) = \langle t^2, t^4, t^6 \rangle at t = 1
```

3. $\vec{p}(t) = \langle t + 2, 3 - t, 2t - 1 \rangle$ at t = 0

Example. At what point do the curves $\vec{r_1}(t) = \langle t, 1-t, 3+t^2 \rangle$ and $\vec{r_2}(t) = \langle 3-t, t-2, t^2 \rangle$ intersect? Find their angle of intersection correct to the nearest degree.

Derivative rules - see textbook

- Is there a product rule for derivatives of vector functions?
- Is there a quotient rule for derivatives of vector functions?
- Is there a chain rule for derivatives of vector functions?

Example. Show that if $\|\vec{r}(t)\| = c$ (a constant), then $\vec{r'}(t)$ is orthogonal to $\vec{r}(t)$ for all t.

Review. If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, then

$$\int \vec{r}(t) \, dt =$$

and

$$\int_{a}^{b} \vec{r}(t) \, dt =$$

Example. Find $\vec{p}(t)$ if $\vec{p}'(t) = \cos(\pi t)\vec{i} + \sin(\pi t)\vec{j} + t\vec{k}$ and $\vec{p}(1) = 6\vec{i} + 6\vec{j} + 6\vec{k}$.

Extra Example. Show that if \vec{r} is a vector function such that \vec{r}'' exists, then

$$\frac{d}{dt}[\vec{r}(t) \times \vec{r}'(t)] = \vec{r}(t) \times \vec{r}''(t)$$

Extra Example. If $\vec{u}(t) = \vec{r}(t) \circ [\vec{r}'(t) \times \vec{r}''(t)]$, show that

$$\vec{u}'(t) = \vec{r}(t) \cdot [\vec{r}'(t) \times \vec{r}'''(t)]$$

§14.4 Arclength

After completing this section, students should be able to:

- Set up an intergral to represent the arclength of a curve, and compute the integral when it simplifies nicely.
- Explain what it means for a curve to be parametrized by arclength.
- Reparametrize curves so that they are parametrized by arclength.

Example. Find the length of this curve.

Note. In general, it is possible to approximate the length of a curve x = f(t), y = g(t) between t = a and t = b by dividing it up into n small pieces and approximating each curved piece with a line segment.

Arc length is given by the formula:

Set up an integral to express the arclength of the Lissajous figure

 $x = \cos(t), y = \sin(2t)$

•

Review. To find the arc length of a space curve $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, we can approximate it with straight line segments.

Note. The **arc length** of a curve $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ between t = a and t = b is given by

Definition. The **arc length function** (starting at t = a) is

s(t) =

Note. If s(t) is the arc length function, then s'(t) =

In words, this says that the rate of change of the arclength with respect to time is ...

Example. Consider the two curves:

1. $\vec{r}(u) = \langle 2u, u^2, \frac{1}{3}u^3 \rangle$ for $0 \le u \le 1$

2. $\vec{q}(t) = \langle 2\ln(t), (\ln(t))^2, \frac{1}{3}(\ln(t))^3 \rangle$ for $1 \le t \le e$

How are the curves related?

We say that $\vec{q}(t)$ is a **reparametrization** of $\vec{r}(u)$ because:

Also $\vec{r}(u)$ is a reparametrization of $\vec{q}(t)$ because:

You can think of a reparametrization of a curve as the same curve, traveled at a different speed. In our case, \vec{q} moves along the curve (circle one) slower / faster than \vec{r} .

In mathematical notation, $\vec{q}(t)$ is a reparametrization of $\vec{r}(u)$ if $\vec{q}(t) = \vec{r}(\phi(t))$ for some strictly increasing (and therefore invertible) function $u = \phi(t)$.

Find the arc length of each curve.

$$\vec{r}(u) = < 2u, u^2, \frac{1}{3}u^3 >$$

for $0 \le u \le 1$

 $\vec{q}(t) = <2\ln(t), (\ln(t))^2, \frac{1}{3}(\ln(t))^3 >$ for $1 \le t \le e$ Fact. Arc length does not depend on parametrization.

Proof:

Is there a natural, best way to parametrize a curve?

Definition. We say that a curve $\vec{r}(t)$ is parametrized by arclength if

Note. If the curve $\vec{r}(t)$ is parametrized by arclength then ...

Note. If $\|\vec{r}'(t)\| = 1$ for all *t*, then ...

Example. Reparametrize by arc length:

 $\vec{p}(t) = 3\sin(t)\vec{i} + 4t\vec{j} + 3\cos(t)\vec{k}$ for $t \ge 0$ **Example.** Reparametrize by arc length:

 $\vec{r}(t) = e^{3t}\vec{i} + e^{3t}\vec{j} + 3\vec{k}$ for $t \ge 0$