§10 Finding All Types of Isometries (Optional)

The goal of this section is to prove that there are only four (or five) isometries of the plane:

Reference: *Groups and Symmetry: A Guide to Discovering Mathematics* by David Farmer

Supplies:
- Geogebra (phones or laptops)
Factoring an isometry as a product of reflections

Each figure below shows a pair of isometric (congruent) polygons.

For each figure, find a sequence of no more than three reflections so that one polygon ends up coinciding with the other polygon.
• Can every isometry can be viewed as a product of either 1, 2, or 3 reflections?
 – If so, find an algorithm to locate the mirrors (i.e. give instructions that could be applied to any pair of isometric figures).
 – If not, draw a pair of isometric figures for which there is no such sequence.
For the dinosaur stamp symmetry page, write the isometry that gets from dinosaur A to dinosaur B as a product of at most 3 reflections, by using Geogebra to draw the exact mirror lines. Do the same thing for the isometry that gets from A to C and for the isometry that gets from B to C.
Polygons that share three vertices

A vertex of a polygon is a corner where two edges meet.

These two polygons share two vertices.

- Is it possible to draw two congruent polygons in the plane that share three corresponding vertices but don’t share all their vertices?
- What about for polyhedra in 3-dimensional space?
Theorem. If two congruent polygons share three corresponding vertices that are not colinear, then they share all vertices.

Proof.

- Step 1: Suppose we have two congruent polygons that share three corresponding vertices A, B, and C.
- Step 2: Suppose there is a fourth vertex D on the first polygon.
- To continue this proof, a hint: draw circles.
Given any isometry, how can we write it as a product of three reflections EVEN IF we don’t know ahead of time that it is a translation, reflection, rotation, or glide?

HINT: Perform one reflection at a time to "fix up" one point at a time. That is, first reflect to bring one point \(A \) onto its image \(A' \), then reflect to bring another point \(B \) onto its image \(B' \), etc.

How many points do you need to "fix up" before you are done?
Theorem. Any isometry can be written as a product of at most three reflections.

Proof. • Pick three non-collinear points A, B, and C and find the points A', B', C', where the isometry takes them.

• It is also possible to find a product of three reflections that takes A to A', B to B', and C to C'. How?

• Continue the proof from here.

What about in 3-d?
Theorem. There are no other isometries of the plane besides ...

Proof. • Any isometry of the plane can be written as the product of one, two, or three reflections.
 • If only one reflection is needed, then the isometry is a reflection.
 • If exactly two reflections are needed, then the isometry is:
 • If exactly three reflections are needed, then the isometry is:
 • Why is the last statement true?
Why is a product of three reflections always a reflection or a glide reflection?

- Suppose we have an isometry that is a product of three reflections through mirrors m_1, m_2, and m_3.
- If m_1, m_2, and m_3 are all parallel, then the product of the reflections is a ______. Why?
- If m_2 and m_3 intersect, then reflection through m_2 and then m_3 is a ______ with rotocenter at the intersection of m_2 and m_3.
- So we can think of our isometry as reflection through m_1 followed by rotation around this intersection point.
- But if we rotate m_2 and m_3 around this intersection point, we’ll still get the same rotation with the same rotocenter.
- So rotate m_2 and m_3 around their intersection point until m_2 is perpendicular to m_1.
- Now our isometry is reflection through m_1, then m_2, then m_3, and m_1 is perp to m_2.
- So reflection through m_1 then m_2 is the same as rotation by ______ degrees with rotocenter at the intersection of m_1 and m_2.
- If we rotate m_1 and m_2 around their intersection point, we still get the same rotation.
• So rotate \(m_1 \) and \(m_2 \) around their intersection point until \(m_2 \) is parallel to \(m_3 \).

• Now we have \(m_2 \) and \(m_3 \) parallel, and \(m_1 \) perpendicular to both.

• Why is this a glide reflection?
There are a few small details to worry about

- If m_1 and m_2 and m_3 all intersect in the same point, then we need to modify the argument. How?
- If m_2 and m_3 are parallel, we need to modify the argument. How?