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INTRODUCTION AND COURSE LOGISTICS

Introduction and Course Logistics

Topics

BASIC LINEAR ALGEBRA

MORE LINEAR ALGEBRA

DERIVATIVES AND OPTIMIZATION
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Class structure INTRODUCTION AND COURSE LOGISTICS

Class structure

Before Class • Check Canvas for instructions
• Watch short video(s)
• Do before-class assignment(s) on Edfinity

During Class • Take notes using skeleton notes posted on Canvas
• Work problems in groups
• Ask questions and answer questions

After Class • Check Canvas for filled in notes
• Read the book
• Work homework problems on Edfinity
• Attend office hours and ask questions on Piazza
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Help INTRODUCTION AND COURSE LOGISTICS

Help

Here are some ways to get help for this class:

• Office hours:

• Piazza

• Math Help Center: free tutoring Monday - Saturday, in person and on zoom (free)

• Peer Tutoring from the Learning Center: Monday and Tuesday evenings or by
appointment (free)

• Private tutor list - see math department list of grad students who want to tutor for
pay

• Peers
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Honor Code INTRODUCTION AND COURSE LOGISTICS

Honor Code

For homework, in-class problems, and before-class assignments

• Books and calculators are allowed

• Use of apps and software including Python is encouraged for checking answers,
and where specified, to perform parts of computations

• Please resist the temptation to overuse technology: take care to do enough com-
putations by hand to thoroughly master all algorithms

• Collaboration with other students is encouraged

• Collaboration should benefit the learning of all involved

• Copying or trading answers is a violation of the honor code

For tests

• Collaboration is not allowed

• Closed book and notes unless otherwise specified

• Calculator will be allowed, computers will not be allowed, unless otherwise spec-
ified

If in doubt about what is permitted on an assignment, please ask!
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More on Class Logistics INTRODUCTION AND COURSE LOGISTICS

More on Class Logistics

Tour of Canvas

Questions about class logistics

Poll about interest and math background
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LINEAR EQUATIONS - INTRODUCTION

Linear Equations - Introduction

After completing this section, students should be able to:

• Distinguish linear vs. non-linear equations

• Identify solutions of systems of linear equations by plugging them in

• Convert between a system of linear equations and an augmented matrix

7



LINEAR EQUATIONS - INTRODUCTION

Example. The equation

is a linear equation.

Definition. A linear equation is a an equation that can be written as ...
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LINEAR EQUATIONS - INTRODUCTION

Example. Which of the following are linear equations?

A. 4x2 + 5x + 6 = 0

B. 1
3uv + 2

3u = 3
5v

C. 5a + 2 = 6b −
√

2c
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LINEAR EQUATIONS - INTRODUCTION

Definition. A system of linear equations is ...

For example,
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LINEAR EQUATIONS - INTRODUCTION

Definition. A solution to a system of linear equations is ...

For example,

is a solution to the system of equations.

x + y = 4

3x + 2z = 6

x − y = 3z

But

is not.

END OF VIDEO
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LINEAR EQUATIONS - INTRODUCTION

Question. Which of these are linear equations?

A. x + y = 1 − t

B. xy + yz + xz = 1

C. (x − 1)(x + 1) = 0

D. 2x + 2y = 16

E. cos(15)y +
x
4
= −1

F.
√

5x2 = πx1 + 1

Question. Which of the following are solutions to the system of linear equations?

x + y + z = 1
2x + y = 2
y + 2z = 0

A. (x, y, z) = (0, 0, 0)

B. (x, y, z) = (0, 2,−1)

C. (x, y, z) = (3,−4, 2)

D. (x, y, z) = (2, 1,−2)

E. None
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LINEAR EQUATIONS - INTRODUCTION

Definition. A matrix is ...

Example. For example, this is a matrix:

Example. Encode the following system of linear equations as an ”augmented” matrix:

3x − 5y − 8z = 4
5x − 2y = 3z

x = 2y + 7

Example. Rewrite the following matrix as a system of linear equations:
1 −2 3 3
0 1 4 2
−1 3 1 4
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LINEAR EQUATIONS - INTRODUCTION

Extra Example. Solve the system of linear equations

x1 − 3x2 + 2x3 = −1
2x1 − 5x2 − x3 = 2

−4x1 + 13x2 − 12x3 = 11
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LINEAR EQUATIONS - INTRODUCTION

Extra Example. Solve the system of equations

x − y + z = 1
2x + 6y − z = −4

4x − 5y + 2z = 0
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SOLVING SYSTEMS LINEAR EQUATIONS

Solving Systems Linear Equations

After completing this section, students should be able to:

• Convert a system of linear equations to an augmented matrix and vice versa.

• Solve a system of linear equations using elimination and identify the operations
on the augmented matrix that correspond to each step.
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SOLVING SYSTEMS LINEAR EQUATIONS

Example. Solve the system of linear equations using substitution:

−2a + 3b + 4c = 1

a + b + 5c = 2

b = 2a + c

17



SOLVING SYSTEMS LINEAR EQUATIONS

Example. Solve the system of linear equations using elimination:

−2a + 3b + 4c = 1

a + b + 5c = 2

b = 2a + c
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SOLVING SYSTEMS LINEAR EQUATIONS

Example. Solve the system of linear equations using elimination and identify the
operations on the augmented matrix that correspond to each step :

−2a + 3b + 4c = 1

a + b + 5c = 2

b = 2a + c

END OF VIDEOS
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SOLVING SYSTEMS LINEAR EQUATIONS

Example. Write this system of linear equations as an augmented matrix.

−2x1 + 5x2 − 10x3 = 4
x1 − 2x2 + 3x3 = −1

7x1 − 17x2 + 34x3 = −16
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SOLVING SYSTEMS LINEAR EQUATIONS

Example. Solve this system of linear equations by simultaneously manipulating the
equations and the matrix.

−2x1 + 5x2 − 10x3 = 4
x1 − 2x2 + 3x3 = −1

7x1 − 17x2 + 34x3 = −16
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SOLVING SYSTEMS LINEAR EQUATIONS

Example. Perform the given row operation on the matrix A =


3 2 −1
5 0 −1
4 6 0


A. R1 ↔ R3

B. 1
2R3 → R3

C. 2R1 − R2 → R2
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SOLVING SYSTEMS LINEAR EQUATIONS

Example. The matrix on the right results after performing a single row operation on
the matrix on the left. Identify the row operation.

A.


−2 1 0
13 −3 6
−11 7 −5

→


4 −2 0
13 −3 6
−11 7 −5



B.
[

4 2 −1 2
−1 0 5 7

]
→

[
1 2 14 23
−1 0 5 7

]
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SOLVING SYSTEMS LINEAR EQUATIONS

Example. Rewrite the system of equations as an augmented matrix.

2x1 − 2x2 + x3 = 3
−x1 + x2 − x3 = −3
x1 − 2x2 + x3 = 2
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SOLVING SYSTEMS LINEAR EQUATIONS

Example. Solve this system of linear equations by simultaneously manipulating the
equations and the matrix.

2x1 − 2x2 + x3 = 3
−x1 + x2 − x3 = −3
x1 − 2x2 + x3 = 2
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REDUCED ROW ECHELON FORM

Reduced Row Echelon Form

After completing this section, students should be able to:

• Recognize when a matrix is in reduced row echelon form.

• Use Gaussian elimination to put a matrix in reduced row echelon form.

• Explain the Gaussian elimination algorithm.
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REDUCED ROW ECHELON FORM

Consider the matrix 
1 0 0 −8

3
0 1 0 −11

3
0 0 1 5

3


If this matrix represents a system of linear equations in the variables x, y, z, what are
the solutions to the system?

Consider the matrix 
1 2 0 3
0 0 1 7
0 0 0 0


If this matrix represents a system of linear equations in the variables x, y, z, what are
the solutions to the system?

What properties of these matrices makes it easy to find the solutions?
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REDUCED ROW ECHELON FORM

Definition. A matrix is said to be in reduced row-echelon form (RREF) if:

1.

2.

3.

4.
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REDUCED ROW ECHELON FORM

Example. Which of these matrices are in RREF?

(a)


1 1 0 0 1
0 0 1 1 0
0 0 0 0 0

 (b)


1 0 0 0 1
0 1 0 5 2
0 0 1 0 3

 (c)


1 0 0 0 1
0 2 1 0 0
0 0 0 1 0



(d)


1 2 0 0 1
0 0 0 1 7
0 0 1 0 −1

 (e)


1 0 1 0 1
0 0 1 0 0
0 0 0 1 0

 (f)


1 0 0 0 1
0 0 0 0 0
0 0 1 0 3



END OF VIDEOS
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REDUCED ROW ECHELON FORM

Question. When we solve a system of equations using the method of elimination, what
are the types of manipulations that we use on the equations?

•

•

•

•

Question. What are the corresponding operations that we use on rows of the aug-
mented matrix?

•

•

•

•
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REDUCED ROW ECHELON FORM

Definition. The following operations on a matrix are called ...

1. Switch two rows.

2. Mulitply a row by a non-zero constant.

3. Multiply a row by a constant and add it to another row.

Example. Sometimes the easiest way to solve a system of equations is to use more
complex operations:

−7x + 5y = 2
3x − 2y = 4

But it can also be solved using only elementary row operations. How could we do
this, in this example?
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REDUCED ROW ECHELON FORM

Example. Each row operation below is not an elementary row operation. Can it be
written as a sequence of elementary row operations, one performed after the other? If
so, give the elementary row operations. If not, explain why not.

A. 2R1 + 5R3 → R1

B. 6R2 − R4 → R3

32



REDUCED ROW ECHELON FORM

Example. Which of these matrices are in reduced row echelon form (RREF)?

A.


2 0 0
0 0 2
0 0 0


B.


1 0 0 5
0 0 1 2
0 1 0 1


C.


1 1 1
0 1 1
0 0 1


D.


1 4 0 3
0 0 0 0
0 0 1 1


E.


1 0 0 7
0 1 0 0
0 0 1 −2


A matrix is in RREF if:
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REDUCED ROW ECHELON FORM

Question. How is putting an augmented matrix in RREF, using row operations, useful
for solving equations?
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REDUCED ROW ECHELON FORM

Example. Use elementary row operations to put the matrix in reduced row echelon
form. Check your answer with technology.

0 0 2 −4 −6
1 −7 0 6 5
−1 7 −4 3 5
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REDUCED ROW ECHELON FORM

Example. Convert the system to an augmented matrix and then find all solutions by
reducing the system to RREF. Check your answer with technology.

2x1 + x2 = 1
−4x1 − x2 = 3
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REDUCED ROW ECHELON FORM

Example. Covert the system to an augmented matrix and then find all solutions by
reducing the system to RREF. Check your answer with technology.

2x1 + 6x2 − 9x3 = 1
−3x1 − 11x2 + 9x3 = 2

x1 + 4x2 − 2x3 = 3

37



REDUCED ROW ECHELON FORM

Extra Example. Put the augmented matrix for the system of linear equations in reduced
row echelon form. Check your answer with technology.

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Existence and Uniqueness of Solutions

After completing this section, students should be able to:

• Give examples of systems of linear equations that have (a) one unique solution,
(b) no solutions, and (c) infinitely many solutions

• After putting an augmented matrix in reduced row echelon form, identify whether
the associated system of linear equations has (a) one unique solution, (b) no solu-
tions, and (c) infinitely many solutions

• Write down the solutions to a system of linear equations based on its augmented
matrix in RREF.

• For a system of two variables, explain the relationship between the positions of
the lines represented by the equations and whether the system has (a) one unique
solution, (b) no solutions, and (c) infinitely many solutions.
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Example. How many solutions does each of these three systems of linear equations
have?

(a) x + y = 1 (b) x + y = 1 (c) x + y = 1
x − y = 3 x + y = 4 2x + 2y = 2
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Note. A system of linear equations can have:

•

•

•
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Example. Find the solutions to this system of linear equations.
1 3 5 7
3 5 7 9
5 7 9 1
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Example. Find the solutions to this system of linear equations.
0 0 2 −4 −6
1 −7 0 6 5
−1 7 −4 3 5
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Example. Find the solutions to this system of linear equations.
1 −2 −3 −1
1 −1 −2 1
−1 3 5 2
2 −2 −3 1



END OF VIDEO
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

In each of the following examples, a system of linear equations has an augmented
matrix that has been converted to RREF. How many solutions does the system have?

A.
[
1 1 0
0 0 1

]

B.


1 0 0 0 5
0 1 0 0 −2
0 0 1 0 0
0 0 0 1 4
0 0 0 0 0



C.


1 0 0 1
0 1 2 3
0 0 0 0
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Extra Example. A system of linear equations has an augmented matrix that has been
converted to RREF. Find the solutions to the system of equations.
1 1 0 0 2
0 0 1 2 −4
0 0 0 0 0
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Summary: To determine the number of solutions for a system of equations from the
augmented matrix in RREF.

1.

2.

3.
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Example. For each example,

(i) write the system of equations to an augmented matrix

(ii) use technology to convert the matrix to RREF

(iii) write out the solutions to the system of equations, or write ”NONE” if the system
is inconsistent

(iv) if the system has infinitely many solutions, list all solutions and also give 2
particular solutions

A)

x1 + x2 + 6x3 + 9x4 = 0
−x1 − x3 − 2x4 = −3
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

B)

2x1 + x2 + 2x3 = 0
x1 + x2 + 3x3 = 1

3x1 + 2x2 + 5x3 = 3
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

C)

x1 + 3x2 + 3x3 = 1
2x1 − x2 + 2x3 = −1

4x1 + 5x2 + 6x3 = 2
x1 + 3x2 + x3 = 2
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Example. For which values of k, if any, will the following system have (a) exactly 1
solution, (b) infinitely many solutions, (c) no solution ?

x1 + 3x2 = 4
x1 + kx2 = 2
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Extra Example. For which values of k, if any, will the following system have (a) exactly
1 solution, (b) infinitely many solutions, (c) no solution ?

x1 + 3x2 = 4
2x1 + kx2 = 8
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Extra Example. For which values of k, if any, will the system represented by the
following augmented matrix have (a) exactly 1 solution, (b) infinitely many solutions,
(c) no solution ?
1 3 4 1
2 5 1 −1
3 −2 k 7
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MATRIX ADDITION AND SCALAR MULTIPLICATION

Matrix Addition and Scalar Multiplication

After completing this section, students should be able to:

• State the dimensions of a matrix

• Add two matrices of the same dimensions

• Multiply a matrix by a scalar

• Identify what properties matrix addition and scalar multiplication satisfy (e.g.
associativity, commutativity)
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MATRIX ADDITION AND SCALAR MULTIPLICATION

Definition. A matrix is ...

[
1 0 −4
5 9 1

]

The diimensions of a matrix are ...

The elements of a matrix are ...
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MATRIX ADDITION AND SCALAR MULTIPLICATION

To add two matrices of the same dimensions ...

[
1 0 −4
5 9 1

]
+

[
3 −5 7
1 2 1

]
=

To subtract two matrices ...

[
1 0 −4
5 9 1

]
−

[
3 −5 7
1 2 1

]
=

To multiply a matrix by a scalar ...

3 ·
[
1 0 −4
5 9 1

]
=
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MATRIX ADDITION AND SCALAR MULTIPLICATION

Properties of addition and multiplication of numbers:

1. Addition is associative

2. Addition is commutative

3. Additive identity (the number zero)

4. Multiplication distributes over addition

5. Multiplication by 0

6. Multiplication is associative

7. Multiplication is commutative
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MATRIX ADDITION AND SCALAR MULTIPLICATION

Properties of matrix addition and scalar multiplication:

1. Addition is associative

2. Addition is communtative

3. Additive identity (the zero matrix)

4. Scalar multiplication is distributive

5. Multiplication by 0

6. Scalar multiplication is associative

7. Scalar multiplication is commutative
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MATRIX ADDITION AND SCALAR MULTIPLICATION

Example. Find 5A − B, where

A =

2 −2 1
0 4 −2
3 0 0

 and B =

8 10 9
4 −5 3
6 0 2



END OF VIDEOS
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MATRIX ADDITION AND SCALAR MULTIPLICATION

Example. For matrices A =
[
4 −5
1 3

]
and B =

[
1 2
−4 6

]
, simplify each expression

1. A + B

2. 3A − 4B

3. 2(A − B) − (A − 3B)
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MATRIX ADDITION AND SCALAR MULTIPLICATION

Example. For matrices C =
[
3 −1
2 5

]
and D =

[
1 7
3 −4

]
, find the matrix X that satisfies the

equation 3C + 2X = −D
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MATRIX ADDITION AND SCALAR MULTIPLICATION

Example. Find the scalars a and b that satisfy the equation

a

123
 + b

112
 =
 0
−1
−1
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MATRIX MULTIPLICATION

Matrix Multiplication

After completing this section, students should be able to:

• Decide, based on the dimensions of two matrices A and B, if it is possible to take
the product AB

• Compute the product of two matrices of appropriate dimensions

• Identify what properties matrix multiplication satisfies (e.g. associativity, distribu-
tive property)

• Give an example to show that multiplication of matrices is not always communta-
tive

• Write down a matrix that is a multiplicative identify
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MATRIX MULTIPLICATION

Definition. A matrix that has only one column is called a ...

V =


1
−2
3
5


Definition. A matrix has only one row is called a ....

W =
[
3 6 1 −1

]
Definition. We multiply a 1 × n row vector with an n × 1 column vector as follows:
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MATRIX MULTIPLICATION

Definition. Suppose A is an m×r matrix and B is a dimension r×n matrix. The product
A · B (also written AB) is the m × n matrix whose entry in row i and column j is ...

Example. Compute AB, where A =


2 3
1 −5
0 7
−1 1

 and B =
[
4 3 6
1 −2 3

]
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MATRIX MULTIPLICATION

Example. For Y =
[
1 5
7 2

]
and Z =

[
−1 3
9 5

]
find (a) YZ and (b) ZY
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Properties of Matrix Multiplication MATRIX MULTIPLICATION

Properties of Matrix Multiplication

Properties of multiplication: Numbers vs. Matrices

1. Multiplication is associative

2. Multiplication is commutative

3. Multiplication distributes
over addition

4. Multiplicative identity

END OF VIDEOS
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Properties of Matrix Multiplication MATRIX MULTIPLICATION

Example. Multiply u⃗ · v⃗, where u⃗ =
[
5 6 0 −2

]
and v⃗ =


3
−1
4
2



Example. Multiply
[
−5 6 −4
1 2 −3

]
·


2 −1 4
9 −5 −2
3 −1 0
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Properties of Matrix Multiplication MATRIX MULTIPLICATION

Example. For matrices A =
[
5 4 −1
3 −2 2

]
and B =


4 0
2 1
9 8
2 −3


(a) Is it possible to multiply AB ?

(b) Is it possible to multiply BA?
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Properties of Matrix Multiplication MATRIX MULTIPLICATION

Example. Multiply AB and BA

A =


−4 3 3
−5 −1 −5
−5 0 −1

 B =


0 5 0
−5 −4 3
5 −4 3
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Properties of Matrix Multiplication MATRIX MULTIPLICATION

Example. Multiply AB and BA

A =


1 2 3
4 5 6
7 8 9

 B =


−1 0 0
0 2 0
0 0 3
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Properties of Matrix Multiplication MATRIX MULTIPLICATION

Example. Multiply AB and BA

A =
[
−3 6 1

]
B =


1
−2
5



72



Properties of Matrix Multiplication MATRIX MULTIPLICATION

For n×n matrices A, B, and C are these statements true or false? Note that True means
always true and False means sometimes or always false.

1. True or False: AB = BA

2. True or False: A(B + C) = AB + AC

3. True or False: A(BC) = (AB)C

4. True of False: If C ·D = 0, then either C = 0 or D = 0.
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Properties of Matrix Multiplication MATRIX MULTIPLICATION

5. True or False: If C is not the zero matrix, and CA = CB, then A = B.

74



Interpretations of Matrix Multiplication MATRIX MULTIPLICATION

Interpretations of Matrix Multiplication[
2 3 1
−4 2 5

]
·


1 −2
2 5
3 1

 =
[
11 12
15 23

]

Interpretation 1: the i j entry of A · B tells us ...

Interpretation 2: the jth column of A · B tells us ...
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Interpretations of Matrix Multiplication MATRIX MULTIPLICATION

Example. Given that


4 5
6 7
8 9


[
2
1

]
=


13
19
25

 , and


4 5
6 7
8 9


[
1
1

]
=


9

13
17

, and


4 5
6 7
8 9


[
0
3

]
=


15
21
27

 ,

find


4 5
6 7
8 9


[
2 1 0
1 1 3

]
.
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Interpretations of Matrix Multiplication MATRIX MULTIPLICATION

Definition. A linear combination of vectors is ...

Example. 3


1
2
3

 + 4


−2
5
0

 − 2


4
1
−1



Interpretation 3: the jth column of A · B tells us ...

[
2 3 1
−4 2 5

]
·


1 −2
2 5
3 1

 =
[
11 12
15 23

]
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Interpretations of Matrix Multiplication MATRIX MULTIPLICATION

Example. For A =


1 2
6 −5
3 4

, write down a matrix B so that

• the first column of A · B wlll be twice the first column of A plus 3 times the second
column of A,

• the second column of A · B wlll be -3 times the first column of A plus 4 times the
second column of A,

• the third column of A ·B will be the first column of A plus the second column of A,

• the forth column of A · B will be 5 times the second column of A.
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INTRODUCTION TO VECTORS

Introduction to Vectors

After completing this section, students should be able to:

• Represent vectors as columns of numbers and as arrows

• Add and subtract vectors and multiply vectors by a scalar, both in the column
representation and in the arrow representation

• Find the length of a vector
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INTRODUCTION TO VECTORS

Definition. A vector can be defined as ...

Definition. The components of the vector are ...

Definition. The dimension of the vector is ...

Definition. We add vectors by ...[
3
7

]
+

[
1
−5

]
and we subtract them by ...[
3
7

]
−

[
1
−5

]
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INTRODUCTION TO VECTORS

Definition. A scalar is another word for ...

Definition. We mutliply a scalar by a vector by ...

5 ·
[
3
7

]

Definition. The negative of a vector is formed by ...

−

[
1
−5

]

Example. For v⃗ =
[
3
7

]
, what is −v⃗ + v⃗?
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INTRODUCTION TO VECTORS

We can visualize a vector with two components
[
v1

v2

]
by ...

Example. Draw v⃗ =
[

2
−3

]

Example. Which vectors are equivalent?
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INTRODUCTION TO VECTORS
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INTRODUCTION TO VECTORS

Vector addition

Example. For a⃗ =
[
4
1

]
and b⃗ =

[
2
3

]
, represent a⃗, b⃗, and a⃗ + b⃗ with arrows.

In general, to draw the sum of two vectors v⃗ + w⃗
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INTRODUCTION TO VECTORS

Scalar multiplication

Example. For b⃗ =
[
2
3

]
, represent b⃗, 2⃗b, and −b⃗ with arrows.

In general, to draw a scalar multiple times a vector ...
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INTRODUCTION TO VECTORS

Vector subtraction

Example. For a⃗ =
[
4
1

]
and b⃗ =

[
2
3

]
, represent a⃗ − b⃗ with arrows.

In general, to draw the difference of two vectors v⃗ − w⃗
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INTRODUCTION TO VECTORS

Length of vectors

Example. What is the length of the vector
[
4
1

]
?

In general, the length of a vector w⃗ =
[
w1

w2

]
is ...

END OF VIDEOS
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INTRODUCTION TO VECTORS

Question. What are some different ways of representing vector?

• .

• .

• .
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INTRODUCTION TO VECTORS

Example. Group the following vectors into categories based on which ones represent
the same vector.

The vector A⃗B that extends from the point A = (2, 5) to the point B = (−2, 2).
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INTRODUCTION TO VECTORS

Example. For the vectors a⃗, b⃗, and c⃗ shown below, compute the following vectors.

(a) a⃗ + b⃗

(b) a⃗ − b⃗

(c) 2c⃗ − a⃗ + b⃗

(d) How does ||⃗a + b⃗|| compare to ||⃗a|| + ||⃗b||?
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INTRODUCTION TO VECTORS

Example. Find a vector in the opposite direction of v⃗ =< 5,−4 > that is 3 times a long.

Example. Find a vector in the same direction as u⃗ =< 5, 12 > that has length 10.
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INTRODUCTION TO VECTORS

Example. Write the vector a⃗ in terms of the other vectors.

(a) (b) (c)
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In 3-d INTRODUCTION TO VECTORS

In 3-d

All the examples up to now have been for vectors with only two entries (2-dimensional
vectors), but is it also possible to work with vectors in 3-d or higher dimensions in a
similar way.

Example. Consider the vectors a⃗ =


1
−2
3

 and b⃗ =


0
0
2

.
(a) Sketch a⃗ and b⃗.

(b) Compute a⃗ + b⃗ and draw it on the sketch.

(c) What is ||⃗a + b⃗||?
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Multiplying Matrices by Vectors INTRODUCTION TO VECTORS

Multiplying Matrices by Vectors

Extra Example. Consider the matrix A =
[

0 −1
−1 0

]
and the vectors x⃗ =

[
1
0

]
, y⃗ =

[
0
1

]
,

v⃗ =
[
1
1

]
, and w⃗ =

[
−1
2

]
.

Graph x⃗, y⃗, v⃗, w⃗, and Ax⃗, Ay⃗, Av⃗, and Aw⃗ all on the same coordinate axes, using the
same color for x⃗ and Ax⃗, etc.
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Multiplying Matrices by Vectors INTRODUCTION TO VECTORS

Extra Example. Consider the matrix A =
[
1 −1
1 1

]
and the vectors x⃗ =

[
1
0

]
, y⃗ =

[
0
1

]
,

v⃗ =
[
1
1

]
, and w⃗ =

[
−1
2

]
.

Graph x⃗, y⃗, v⃗, w⃗, and Ax⃗, Ay⃗, Av⃗, and Aw⃗ all on the same coordinate axes, using the
same color for x⃗ and Ax⃗, etc.
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Multiplying Matrices by Vectors INTRODUCTION TO VECTORS

Extra Example. Consider the matrix A =
[
3 2
0 1

]
and the vectors x⃗ =

[
1
0

]
, y⃗ =

[
0
1

]
, v⃗ =

[
1
1

]
,

and w⃗ =
[
−1
2

]
.

Graph x⃗, y⃗, v⃗, w⃗, and Ax⃗, Ay⃗, Av⃗, and Aw⃗ all on the same coordinate axes, using the
same color for x⃗ and Ax⃗, etc.
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SOLVING VECTOR EQUATIONS

Solving Vector Equations

After completing the section, students should be able to:

• solve equations like Ax⃗ = b⃗ where A is a matrix and x⃗ and b⃗ are vectors

• when there are infinitely many solutions to the equation Ax⃗ = b⃗, use them to find
solutions to the equation Ax⃗ = 0⃗

• when there is one unique solution to the equation Ax⃗ = b⃗, determine the solutions
to the equation Ax⃗ = 0⃗ with no other information
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SOLVING VECTOR EQUATIONS

Example. Solve the equation Ax⃗ = b⃗ for x⃗, where

A =


1 2 −2
3 4 −5
0 1 1

 and b⃗ =


1
7
−2

.
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SOLVING VECTOR EQUATIONS

Example. Solve the equation Ax⃗ = b⃗ for x⃗.

A =


3 4 1
1 1 0
2 3 1

 and b⃗ =


−2
−5
3

.
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SOLVING VECTOR EQUATIONS

Recap:

1. A =


1 2 −2
3 4 −5
0 1 1

 and b⃗ =


1
7
−2


Ax⃗ = b⃗ Ax⃗ = 0⃗

2. A =


3 4 1
1 1 0
2 3 1

 and b⃗ =


−2
−5
3

.
Ax⃗ = b⃗ Ax⃗ = 0⃗

END OF VIDEO
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SOLVING VECTOR EQUATIONS

Example. Solve the equation Ax⃗ = b⃗ and the equation Ax⃗ = 0⃗ where

A =
[

0 2
−1 3

]
and b⃗ =

[
−2
1

]
.
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SOLVING VECTOR EQUATIONS

Example. Solve the equation Ax⃗ = b⃗ and the equation Ax⃗ = 0⃗ where

A =
[
−4 8 3 2
−4 8 5 2

]
and b⃗ =

[
−4
2

]
.
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SOLVING VECTOR EQUATIONS

Example. Solve the equation Ax⃗ = b⃗ and the equation Ax⃗ = 0⃗ where

A =


1 5 −2
1 4 5
1 3 12

 and b⃗ =


0
1
1
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SOLVING VECTOR EQUATIONS

Example. Solve the equation Ax⃗ = b⃗ and the equation Ax⃗ = 0⃗ where

A =


1 1 0
1 0 1
2 1 0
1 1 1

 and b⃗ =


1
2
3
5
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SOLVING VECTOR EQUATIONS

Question (1). If the equation Ax⃗ = b⃗ has infinitely many solutions, then the equation
Ax⃗ = 0⃗ has / could have: (select all that apply)

A. no solutions

B. one unique solution

C. infinitely many solutions

Question (2). If the equation Ax⃗ = b⃗ has one unique solution, then the equation Ax⃗ = 0⃗
has / could have: (select all that apply)

A. no solutions

B. one unique solution

C. infinitely many solutions

Question (3). If the equation Ax⃗ = b⃗ has no solutions, then the equation Ax⃗ = 0⃗ has /
could have: (select all that apply)

A. no solutions

B. one unique solution

C. infinitely many solutions
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SOLVING VECTOR EQUATIONS

Question (4). If the equation Ax⃗ = 0⃗ has infinitely many solutions, then the equation
Ax⃗ = b⃗ has / could have: (select all that apply)

A. no solutions

B. one unique solution

C. infinitely many solutions

Question (5). If the equation Ax⃗ = 0⃗ has one unique solution, then the equation Ax⃗ = b⃗
has / could have: (select all that apply)

A. no solutions

B. one unique solution

C. infinitely many solutions

Question (6). If the equation Ax⃗ = 0⃗ has no solutions, then the equation Ax⃗ = b⃗ has /
could have: (select all that apply)

A. no solutions

B. one unique solution

C. infinitely many solutions

D. this is impossible
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SOLVING VECTOR EQUATIONS

Example. Suppose that the complete set of solutions to the equation Ax⃗ = 0⃗ is

x2


−7
1
0

+x3


4
0
1

. Suppose also that w⃗ =


−2
0
0

 is one solution to the equation Ax⃗ = b⃗. Find

all solutions to Ax⃗ = b⃗.

Example. Suppose that the complete set of solutions to the equation Ax⃗ = b⃗ is

x3


2
−3
1

 +

4
1
0

. Find all solutions to Ax⃗ = 0⃗.

107



SOLVING VECTOR EQUATIONS

Extra Example. Suppose that v⃗ =


6
1
−1

 is a solution to the equation Ax⃗ = 0⃗ and w⃗ =


2
3
3


is a solution to the equation Ax⃗ = b⃗.

1. Find as many solutions to the equation Ax⃗ = 0⃗ as you can.

2. Find as many solutions to the equation Ax⃗ = b⃗ as you can.

108



SOLVING VECTOR EQUATIONS

Question. True or False: If v⃗ is a solution to Ax⃗ = 0⃗ and w⃗ is a solution to Ax⃗ = b⃗, then
v⃗ + w⃗ is a solution to Ax⃗ = b⃗.

Question. True or False: If u⃗ and w⃗ are both solutions to Ax⃗ = b⃗, then ⃗u − w is a solution
to Ax⃗ = 0⃗.

109



SOLVING VECTOR EQUATIONS

Extra Example. Suppose that v⃗ =
[
2
5

]
and w⃗ =

[
3
4

]
are both solutions to the equation

Ax⃗ = b⃗.

1. Find one solution to the equation Ax⃗ = 0⃗.

2. Find as many solutions to the equation Ax⃗ = 0⃗ as you can.

3. Find as many solutions to the equation Ax⃗ = b⃗ as you can.
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SOLVING MATRIX EQUATIONS

Solving Matrix Equations

After completing this section, students should be able to

• Solve matrix equations of the form AX = B for X, where A and B are matrices, or
explain why there are no solutions.
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SOLVING MATRIX EQUATIONS

Example. Solve the matrix equation AX = B for matrix X, where

A =
[
1 3
2 2

]
and B =

[
1 4 1
−1 2 1

]
.
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SOLVING MATRIX EQUATIONS

Example. Solve the matrix equation AX = B for matrix X, where

A =


3 1 1
2 5 0
4 −10 3

 and B =


1 1 1
1 0 1
1 3 0

.

END OF VIDEO
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SOLVING MATRIX EQUATIONS

Question. For matrix A =


−2 0 4
−5 −4 5
−3 5 −3

, how do we go about solving the equation

Ax⃗ =


−18
−38
10

 ?

How do we go about solving

Ax⃗ =


2
18
2

 ? Ax⃗ =


−14
−13
−18

 ?
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SOLVING MATRIX EQUATIONS

Question. For matrix A =


−2 0 4
−5 −4 5
−3 5 −3

, how do we go about solving the equation

AX =


−18 2 −14
−38 18 −13
10 2 −18

 ?
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SOLVING MATRIX EQUATIONS

Key ideas:

1. If we find solutions to the equations

Ax⃗1 = b⃗1 (call the solution vector v⃗1)
Ax⃗2 = b⃗2 (call the solution vector v⃗2)
Ax⃗3 = b⃗3 (call the solution vector v⃗3)

Then we can find the solution to

AX =
[
b⃗1 b⃗2 b⃗3

]
by ...

2. Instead of doing RREF 3 times, for

[A | b⃗1]
[A | b⃗2]
[A | b⃗3]

do RREF once for ...
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SOLVING MATRIX EQUATIONS

Example. The augmented matrix
[
1 3 4 1 3
2 5 8 −1 0

]
row reduces to

[
1 0 4 −8 −15
0 1 0 3 6

]
.

What is the solution to the following matrix equation ?[
1 3
2 5

]
X =
[
4 1 3
8 −1 0

]

117



SOLVING MATRIX EQUATIONS

Example. The augmented matrix
[
1 3 4 1 3
2 6 8 −1 0

]
row reduces to

[
1 3 4 0 1
0 0 0 1 2

]
.

How many solutions are there to the following matrix equation ?[
1 3
2 6

]
X =
[
4 1 3
8 −1 0

]

Example. The augmented matrix
[
1 3 4 1 3
2 6 8 2 6

]
row reduces to

[
1 3 4 1 3
0 0 0 0 0

]
.

How many solutions are there to the following matrix equation ?[
1 3
2 6

]
X =
[
4 1 3
8 2 6

]
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SOLVING MATRIX EQUATIONS

Example. Solve the matrix equation AX = B, where

A =


−4 2 −2
1 0 1
3 −1 1

 and B =


10 2
−3 5
−8 −1
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SOLVING MATRIX EQUATIONS

Example. Solve the matrix equation AX = B, where

A =


1 −2 −3
1 −1 −2
2 −3 −5

 and B =


−1 2 3
1 0 5
2 0 4
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SOLVING MATRIX EQUATIONS

Example. Solve the matrix equation AX = B, where

A =
[

2 1 0
−1 −1 −1

]
and B =

[
2 1 3
1 0 4

]
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THE INVERSE OF A MATRIX

The Inverse of a Matrix

After completing this section, students should be able to:

• compute the inverse of a matrix by converting an augmented matrix to RREF

• compute the inverse of a 2x2 matrix using a shortcut formula

• use the inverse of a matrix to solve a matrix equation of the form AX = B for X
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Inverses of Matrices Video THE INVERSE OF A MATRIX

Inverses of Matrices Video

Definition. Suppose that A is an n × n matrix and B is another n × n matrix such that
AB = In and BA = In. Then

1. A is called ...

2. B is called ... , and denoted A−1.

Question. Is it possible to have AB = In but BA , In?

Question. Is it possible to have two different matrices B and C that are both inverses
for A?

Question. Does every square matrix have an inverse?
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Inverses of Matrices Video THE INVERSE OF A MATRIX

Example. Find the inverse matrix for A =


0 1 2
1 0 3
4 −3 8

 if it exists.
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Inverses of Matrices Video THE INVERSE OF A MATRIX

Example. Solve the equation AX = B, where A =


0 1 2
1 0 3
4 −3 8

 and B =


1 2
3 3
0 −1



END OF VIDEO
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Review of definitions THE INVERSE OF A MATRIX

Review of definitions

Review. The identity matrix I is the matrix ...

Review. If B is a square matrix, and I is the identity matrix with the same dimensions,
then IB = and BI = .

Review. A square matrix A is called invertible if ...
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Computing Inverses THE INVERSE OF A MATRIX

Computing Inverses

Example. Decide if the matrix is invertible. If it is, find the inverse.
25 −10 −4
−18 7 3
−6 2 1



127



Computing Inverses THE INVERSE OF A MATRIX

Example. Decide if the matrix is invertible. If it is, find the inverse.[
1 5
−5 −24

]
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Computing Inverses THE INVERSE OF A MATRIX

A shortcut formula for inverse of a 2x2 matrix.
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Computing Inverses THE INVERSE OF A MATRIX

Example. Decide if the matrix is invertible. If it is, find the inverse.[
1 −3
−2 6

]
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Computing Inverses THE INVERSE OF A MATRIX

Example. Decide if the matrix is invertible. If it is, find the inverse.
2 3 4
−3 6 9
−1 9 13
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Computing Inverses THE INVERSE OF A MATRIX

Example. Decide if the matrix is invertible. If it is, find the inverse.
2 0 0
0 −3 0
0 0 −1
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Computing Inverses THE INVERSE OF A MATRIX

Example. Decide if the matrix is invertible. If it is, find the inverse.
1 0 0 0
−19 −9 0 4
33 4 1 −7
4 2 0 −1
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Solving equations with matrix inverses THE INVERSE OF A MATRIX

Solving equations with matrix inverses

Example. Use A−1 to solve the equation Ax⃗ = b⃗.

A =
[

9 70
−4 −31

]
, b⃗ =

[
−2
1

]
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Solving equations with matrix inverses THE INVERSE OF A MATRIX

Example. Use A−1 to solve the equation AX = B.

A =


1 −6 0
0 1 0
2 −8 1

, B =


−69 0 4 1
10 4 5 0
−102 9 9 5
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Solving equations with matrix inverses THE INVERSE OF A MATRIX

How is the number 1 like the matrix I?

How is the multiplicative inverse of a number like the inverse of a matrix?

How is solving an algebra equation like solving a matrix equation?

How are multiplication and inverses of numbers DIFFERENT from multiplication and
inverses of matrices?
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PROPERTIES OF THE MATRIX INVERSE

Properties of the Matrix Inverse

After completing this section, students should be able to:

• For an n × n matrix, list several conditions that are equivalent to the matrix being
invertible

• For an n × n matrix A, describe the relationship between A being invertible and
the number of solutions to the equation Ax⃗ = b⃗

• Compute (AB)−1 from A−1 and B−1

• Simplify (A−1)−1
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Equivalent Conditions for Matrices to be Invertible Video PROPERTIES OF THE MATRIX INVERSE

Equivalent Conditions for Matrices to be Invertible Video

Theorem. Let A be an n × n matrix. The following statements are equivalent:

1. A is invertible.

2. There exists a matrix B such that BA = I.

3. There exists a matrix C such that AC = I.

4. The reduced row echelon form of A is I.

5. The equation Ax⃗ = b⃗ has exactly one solution for every n × 1 vector b⃗.

6. The equation Ax⃗ = 0⃗ has exactly one solution (namely x⃗ = 0⃗).
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Equivalent Conditions for Matrices to be Invertible Video PROPERTIES OF THE MATRIX INVERSE

Note. If an n × n matrix A is invertible, then Ax⃗ = b⃗ ...

Question. If an n × n matrix A is NOT invertible, what can we say about the number
of solutions to the equation Ax⃗ = b⃗?
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Properties of Inverse Matrices Video PROPERTIES OF THE MATRIX INVERSE

Properties of Inverse Matrices Video

Suppose that A and B are invertible matrices. Which of the following statements are
necessarily true?

1. True or False: (A−1)−1 = A

2. True or False: (AB)−1 = A−1B−1

3. True or False: (A + B)−1 = A−1 + B−1

4. True or False: (3A)−1 =
1
3

A−1.
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Properties of Inverse Matrices Video PROPERTIES OF THE MATRIX INVERSE

Definition. A diagonal matrix is a square matrix with ...

Example. Which of these matrices are diagonal matrices?
2 0 0
0 1

2 0
0 0 0

. .


5 0 0 0
0 1 1 0
0 0 2 0
0 0 0 7


Note. If A is a diagonal matrix with diagonal entries d1, d2, d3, · · · dn, and none of the
diagonal entries are 0, then A−1 ...

Example. Find the inverse of
[
5 0
0 6

]
.
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Properties of Inverse Matrices Video PROPERTIES OF THE MATRIX INVERSE

END OF VIDEOS
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Review PROPERTIES OF THE MATRIX INVERSE

Review

Review. For the equation Ax⃗ = b⃗ there are three options as far as number of solutions
and three corresponding options for the RREF of the augmented matrix

[
A | b⃗
]
,

•

•

•

Review. For the square matrix A, the option that Ax⃗ = b⃗ has a unique solution corre-
sponds to the RREF of A ...

Review. For the square matrix A, the option that Ax⃗ = b⃗ has either no solutions or
infinitely many solutions corresponds to the RREF of A ...
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True or False PROPERTIES OF THE MATRIX INVERSE

True or False

Review. True or False: For a square matrix A if Ax⃗ = 0⃗ has solution(s), then Ax⃗ = b⃗ has
solution(s) for any vector b⃗.

Review. True or False: For a square matrix A if Ax⃗ = 0⃗ has one unique solution, then
Ax⃗ = b⃗ has one unique solution for any vector b⃗.
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True or False PROPERTIES OF THE MATRIX INVERSE

Review. Which of the following statements are true?

1. True or False: (AB)−1 = A−1B−1

2. True or False: (A + B)−1 = A−1 + B−1

3. True or False: (A−1)−1 = A

4. True or False: (5A)−1 = 5A−1
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True or False PROPERTIES OF THE MATRIX INVERSE

Example. In the following statements, A and B are n × n invertible matrices. For each
statement, decide if the statement is true or false. Recall that true means always true,
and false means sometimes or always false. Justify your answer.

1. True or False: (ABA−1)2 = AB2A−1

2. True or False: A3 is invertible

3. True or False: A2B4 is invertible
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True or False PROPERTIES OF THE MATRIX INVERSE

4. True or False: ABA−1 = B

5. True or False: (A + A−1)2 = A2 + (A−1)2

6. True or False: A + In is invertible

7. True or False: A + A−1 is invertible
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THE TRANSPOSE OF A MATRIX

The Transpose of a Matrix

After completing this section, students should be able to:

• Compute the transpose of a matrix

• Find the transpose of the sum A+B from the transpose of A and the transpose of B

• Find the transpose of the product AB from the transpose of A and the transpose of
B

• Find the inverse of AT from the inverse of A

• Find the transpose of the scalar product kA from the transpose of A.
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Transpose Intro Video THE TRANSPOSE OF A MATRIX

Transpose Intro Video

Definition. The transpose of a matrix A, denoted AT, is the matrix you get by ...

Example. Find the transpose of A =
[
−3 4 7
1 0 5

]

Note. If A has size m × n matrix, then AT has size:
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Transpose Intro Video THE TRANSPOSE OF A MATRIX

Properties of Matrix Transpose

Let A and B be two matrices for which the following operations are defined. Which of
these properties necessarily hold?

1. True or False: (A + B)T = AT + BT

2. True or False: (AB)T = ATBT

3. True or False: (kA)T = kAT

4. True or False: (A−1)T = (AT)−1

5. True or False: (AT)T = A

END OF VIDEO
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More Transpose Examples THE TRANSPOSE OF A MATRIX

More Transpose Examples

Example. Find the transpose of the matrix


4 2
−3 17
9 6



Question. If the matrix A is a 3 × 5 matrix, what is the dimension of AT?

Question. If the matrix A has the number 7 in its second row and fifth column (i.e. as
element a25) then where can that number 7 be found in the matrix AT?
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More Transpose Examples THE TRANSPOSE OF A MATRIX

Question. Which one of these statements is false?

A. (AT)T = A

B. (kA)T = kAT

C. (A + B)T = AT + BT

D. (AB)T = ATBT

E. (A−1)T = (AT)−1
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Symmetric and Skew-Symmetric Matrices THE TRANSPOSE OF A MATRIX

Symmetric and Skew-Symmetric Matrices

Example. Find the transpose of these two matrices. How does the transpose compare
to the original?

A =


4 −2 3
−2 6 1
3 1 5

 B =


0 7 −1
−7 0 4
1 −4 0



Definition. A square matrix A is called symmetric if ...

Definition. A square matrix B is called skew-symmetric if ...
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Symmetric and Skew-Symmetric Matrices THE TRANSPOSE OF A MATRIX

Example. Which of these matrices are symmetric and which are skew-symmetric?
4 5 −1
5 −11 3
−1 3 2




0 −8 9 6
8 0 3 −4
−9 −3 0 5
−6 4 −5 0


[

1 2
−2 1

]
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Symmetric and Skew-Symmetric Matrices THE TRANSPOSE OF A MATRIX

Question. For a square matrix A, is A + AT always symmetric? or always skew-
symmetric? or neither of these?

Question. For a square matrix A, is A − AT always symmetric? or always skew-
symmetric? or neither of these?

Question. For any matrix A, is AAT always symmetric? or always skew-symmetric?
or neither of these?
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Symmetric and Skew-Symmetric Matrices THE TRANSPOSE OF A MATRIX

Example. For the square matrix A =


5 −7 3
−1 2 1
10 −4 6


1. Calculate the matrix 1

2(A + AT). Is it symmetric, skew-symmetric, or neither?

2. Calculate the matrix 1
2(A − AT) Is it symmetric, skew-symmetric, or neither?

3. Add together the two matrices from the previous two steps. What do you notice?

4. True or False: for any square matrix A, it is possible to write A as the sum of a
symmetric matrix and a skew-symmetric matrix.
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THE TRACE OF A MATRIX

The Trace of a Matrix

After completing this section, students should be able to:

• Find the trace of a square matrix

• Find the trace of the sum or difference of two matrices from the trace of each of the
matrices

• Find the trace of a scalar multiple of a matrix from the trace of the matrix

• Find the trace of the transpose of a matrix from the trace of the matrix.

• Use the fact that tr(AB) = tr(BA) to simplify expressions.
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THE TRACE OF A MATRIX

Definition. The trace of an n × n matrix A, written tr(A) is ...

Example. Find tr(B) where B =


4 −3 2 9
−5 1 7 11
2 1 3 −8
3 2 −4 5
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THE TRACE OF A MATRIX

Let A and B be n × n matrices, and let k be a number. Then

1. tr(A + B) =

2. tr(A − B) =

3. tr(kA) =

4. tr(AB) =
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THE TRACE OF A MATRIX

5. tr(AT) =

6. tr(A−1) =

END OF VIDEO

160



THE TRACE OF A MATRIX

Example. Find the trace of these two matrices:

A =


5 −2 3 4
1 −6 7 10
5 8 −4 0
−3 −7 11 6

 B =


1 0 9 2
−9 3 4 7
2 3 0 6
−5 10 2 5


Question. What is:

1. tr(A + B)

2. tr(4A − B)

3. tr(AT)
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THE TRACE OF A MATRIX

Example. For the matrices

A =


5 −2 3 4
1 −6 7 10
5 8 −4 0
−3 −7 11 6

 B =


1 0 9 2
−9 3 4 7
2 3 0 6
−5 10 2 5


use python to find

• tr(AB)

• tr(BA)

• tr(A−1)

• tr(B−1)

What relationships, if any, do you find between these quantities and tr(A) and tr(B)?

• True or False: tr(AB) = tr(B)tr(A)

• True or False: tr(A−1) = tr(A)−1
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THE TRACE OF A MATRIX

• True or False: tr(AB) = tr(BA)
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THE DETERMINANT OF A MATRIX

The Determinant of a Matrix

After completing this section, students should be able to

• Compute the determinant of a square matrix.
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THE DETERMINANT OF A MATRIX

Definition. The determinant of a 1 × 1 matrix
[
a
]

is

Definition. The determinant of a 2 × 2 matrix
[
a b
c d

]
is given by

Example. Find the determinant of the matrix
[
3 −2
4 5

]
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THE DETERMINANT OF A MATRIX

Definition. The determinant of a 3 × 3 matrix


a b c
d e f
i j k

 can be computed

Example. Find the determinant of the matrix


2 5 3
1 −4 2
2 1 −1
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THE DETERMINANT OF A MATRIX

Definition. If A is a 3 × 3 matrix, the determinant of the 2 × 2 matrix that you get by
crossing out row i and column j is called the

and denoted

Example. For A =


2 5 3
1 −4 2
2 1 −1



A1,1 = A1,2 = A1,3 =

det(A) =
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THE DETERMINANT OF A MATRIX

Definition. If A is an n × n matrix, then the i, j minor of A is

and the determinant of A is given by det(A) =

Example. Find the determinant of

B =


1 2 0 3
0 1 3 1
4 2 0 1
2 1 1 2



END OF VIDEO
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THE DETERMINANT OF A MATRIX

Idea: For a square matrix A, the determinant det(A) is a number that tells if ..

Definition. The determinant of a 2 × 2 matrix
[
a b
c d

]
is given by

Example. Find the determinant of the matrix
[
5 −7
2 4

]

169



THE DETERMINANT OF A MATRIX

Notation: The determinant of the matrix M =
[
5 −7
2 4

]
can be written using the follow-

ing notation ...
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THE DETERMINANT OF A MATRIX

Definition. The determinant of a 3 × 3 matrix


a b c
d e f
i j k

 can be computed by ...

Example. Find the determinant of the matrix A =


6 2 1
−3 4 2
5 −1 0
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THE DETERMINANT OF A MATRIX

What’s so special about the first row? What happens if we expand along the second
row instead?

A =


6 2 1
−3 4 2
5 −1 0



What happens if we expand along the third row?

A =


6 2 1
−3 4 2
5 −1 0
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THE DETERMINANT OF A MATRIX

What happens if we expand along a column?
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THE DETERMINANT OF A MATRIX

Consider this checkerboard pattern of+ and− signs. How does it help with computing
a determinant?

A =


+ − +

− + −

+ − +
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THE DETERMINANT OF A MATRIX

Example. Find the determinant of the matrix B =


1 −4 1
0 3 0
1 2 2
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THE DETERMINANT OF A MATRIX

Example. Find the determinant of the matrix C =


−3 −5 2 5
−2 4 −3 4
−5 1 0 0
5 4 −3 3
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THE DETERMINANT OF A MATRIX

Extra Example. Find the determinant of the matrix M =


2 −1 4 4
3 −3 3 2
0 4 −5 1
−2 −5 −2 −5
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PROPERTIES OF DETERMINANTS

Properties of Determinants

After completing this section, students should be able to:

• Explain how elementary row operations on a matrix affect the determinant.

• Compute the determinant of a triangular matrix efficiently.

• Explain why the determinant of a matrix with two identical rows is 0

• Given values for det(A) and det(B), find values for det(AT), det(A−1), det(AB),
and det(kA) for a scalar k,

• Determine if a matrix is invertible or not based on its determinant.
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The Determinant and Elementary Row Operations Video PROPERTIES OF DETERMINANTS

The Determinant and Elementary Row Operations Video

Example. Find the determinant of the matrix A =


2 1 5
2 1 5
0 3 4

 .

For any square matrix A, if two rows (or two columns) of A are identical, then det(A) =
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The Determinant and Elementary Row Operations Video PROPERTIES OF DETERMINANTS

Recall: There are three elementary row operations that we use to convert matrices to
reduced row echelon form:

1.

2.

3.
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The Determinant and Elementary Row Operations Video PROPERTIES OF DETERMINANTS

Example. How do these elementary row operations affect the determinant of the matrix

A =


1 2 −1
4 3 0
1 5 −2

 ?

1. Swap the first two rows.

2. Multiply the first row by 5.

3. Add twice the second row to the first row.
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Properties of Determinants Video PROPERTIES OF DETERMINANTS

Properties of Determinants Video

Example. Find the determinant of this matrix:

B =


3 2 4 −5
0 5 7 10
0 0 −2 1
0 0 0 10



Definition. An upper triangular matrix is a matrix with ...

Definition. A lower triangular matrix is a matrix with ...

Definition. A triangular matrix is a matrix that is
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Properties of Determinants Video PROPERTIES OF DETERMINANTS

Note. The determinant of a triangular matrix is
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Properties of Determinants Video PROPERTIES OF DETERMINANTS

Question. How does the determinant interact with other matrix operations?
Let A and B be n × n matrices and k be a scalar.

1. det(kA) =

2. det(AT) =

3. det(AB) =

4. If A is invertible, then det(A−1) =

END OF VIDEOS

184



Determinant tricks PROPERTIES OF DETERMINANTS

Determinant tricks

Example. What is the determinant of the matrix B =


4 0 0 0 0
3 −2 0 0 0
1 7 3 0 0
−9 13 −4 10 0
8 −5 −5 6 1

 ?
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Determinant tricks PROPERTIES OF DETERMINANTS

Example. What is the determinant of the matrix C =



1 2 3 4 5 6
10 9 8 7 6 5
2 3 5 7 11 13
3 1 4 1 5 9
3 1 4 1 5 9
6 2 8 2 10 18


?
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Determinants and elementary row operations PROPERTIES OF DETERMINANTS

Determinants and elementary row operations

Example. For the matrix M =


3 1 1
−1 0 4
5 2 0

, det(M) = −6.

What is the determinant of each of the following matrices? Hint: how are they related
to M?

(a) A =


3 1 1
5 2 0
−1 0 4



(b) B =


3 1 1
−1 0 4
−15 −6 0



(c) C =


33 13 1
−1 0 4
5 2 0

.
Hint: the first row of C is equal to the first row of M plus a multiple of the third
row of M.
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Determinants and elementary row operations PROPERTIES OF DETERMINANTS

Example. The matrix 3 × 3 matrix A row reduces to the identity matrix using the
following steps:

1. R2 ↔ R1.

2. −4R1 + R3 → R3

3. 3R2 + R3 → R3

4. 1
2R3 → R3

5. −2R3 + R2 → R2

6. −3R3 + R1 → R1

What is det(A)?
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Determinants and elementary row operations PROPERTIES OF DETERMINANTS

The 4× 4 matrix B row reduces to the matrix B̃ =


1 0 0 0
0 1 2 0
0 0 0 1
0 0 0 0

 using the following steps:

1. 1
3R1 → R1

2. 4R1 + R2 → R2

3. −5R1 + R4 → R4

4. R2 ↔ R3

5. 1
2R3 → R3

6. −R3 + R4 → R4

What is det(B)?
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Invertible Matrices PROPERTIES OF DETERMINANTS

Invertible Matrices

Question. Suppose a square matrix A row-reduces to a matrix Ã with a row of 0’s.
What can you say about det(A)?

Question. Suppose a square matrix A row-reduces to the identity matrix I. What can
you say about det(A)?

Question. Suppose a square matrix A is invertible. What can you say about det(A)?

Question. Suppose a square matrix A is non-invertible. What can you say about
det(A)?
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Invertible Matrices PROPERTIES OF DETERMINANTS

Example. Which of these matrices are invertible?

(a) B =


4 0 0 0 0
3 −2 0 0 0
1 7 3 0 0
−9 13 −4 10 0
8 −5 −5 6 1



(b) C =



1 2 3 4 5 6
10 9 8 7 6 5
2 3 5 7 11 13
3 1 4 1 5 9
3 1 4 1 5 9
6 2 8 2 10 18
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Determinants and other matrix properties PROPERTIES OF DETERMINANTS

Determinants and other matrix properties

Example. Consider A =


1 0 1
−4 2 5
−3 1 −1

 and B =


5 4 1 −2
3 0 7 1
1 2 −3 6
2 2 0 5

 and C =


2 0 5
−4 10 4
3 5 2


Use Python to calculate the following quantities.

(a) det(A) and det(B).

(b) det(7A) and det(3B)

(c) det(AT) and det(BT)

(d) det(AC) and det(CA)

(e) det(A−1) and det(B−1)
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Determinants and other matrix properties PROPERTIES OF DETERMINANTS

Based on your experiments in Python, make a conjecture about how the following
determinants can be written terms of det(A) and det(B), if A and B are square matrices
of the same dimensions.

(a) det(kA)

(b) det(AT)

(c) det(AB)

(d) det(A−1)
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Determinants and other matrix properties PROPERTIES OF DETERMINANTS

Example. If A and B are 5× 5 matrices with det(A) = −5 and det(B) = 4, find each of the
following

(a) det(A2B)

(b) det(A3B−2)

(c) det(2A)

(d) det(AAT)
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Determinants and other matrix properties PROPERTIES OF DETERMINANTS

Extra Example. Use properties of determinants to solve for a. You do not need to find
the determinants.

(a)

∣∣∣∣∣∣∣∣
4 3 1
2 6 7
−5 10 8

∣∣∣∣∣∣∣∣ = a

∣∣∣∣∣∣∣∣
1 3 4
7 6 2
8 10 −5

∣∣∣∣∣∣∣∣

(b)

∣∣∣∣∣∣∣∣
4 3 1
2 6 7
−5 10 8

∣∣∣∣∣∣∣∣ = a

∣∣∣∣∣∣∣∣
4 3 −5
2 6 −35
−5 10 −40

∣∣∣∣∣∣∣∣

(c)

∣∣∣∣∣∣∣∣
4 3 1
2 6 7
−5 10 8

∣∣∣∣∣∣∣∣ = a

∣∣∣∣∣∣∣∣
9 3 1

37 6 7
35 10 8

∣∣∣∣∣∣∣∣
Hint: add the first column and a multiple of the third column of the left matrix
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LINEAR TRANSFORMATIONS

Linear Transformations

After completing this section, students should be able to:

• Match matrices with the transformation that they produce on vectors or images.

• Locate eigenvectors of a matrix by looking for vectors whose direction remains
unchanged in direction after a transformation by that matrix.

• Write down a matrix based on information about where it takes the vectors
[
1
0

]
and[

0
1

]
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Multiplying Vectors by Matrices LINEAR TRANSFORMATIONS

Multiplying Vectors by Matrices

Example. Consider the matrix A =
[

0 −1
−1 0

]
and the vectors x⃗ =

[
1
0

]
, y⃗ =

[
0
1

]
, v⃗ =

[
1
1

]
,

and w⃗ =
[
−1
2

]
.

Graph x⃗, y⃗, v⃗, w⃗, and Ax⃗, Ay⃗, Av⃗, and Aw⃗ all on the same coordinate axes, using the
same color for x⃗ and Ax⃗, etc.
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Multiplying Vectors by Matrices LINEAR TRANSFORMATIONS

In the previous example, find a vector that is fixed (unchanged) under multiplication
by A.

Definition. A non-zero vector v⃗ that is fixed under multiplication by A, or that is just
multiplied by a scalar under multiplication by A, is called ...

That is, if Av⃗ = kv⃗ for some scalar k, then v⃗ is called ...

The scalar amount k that v⃗ gets multiplied by is called ..
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Multiplying Vectors by Matrices LINEAR TRANSFORMATIONS

Example. Consider the matrix A =
[
1 −1
1 1

]
and the vectors x⃗ =

[
1
0

]
, y⃗ =

[
0
1

]
, v⃗ =

[
1
1

]
, and

w⃗ =
[
−1
2

]
.

Graph x⃗, y⃗, v⃗, w⃗, and Ax⃗, Ay⃗, Av⃗, and Aw⃗ all on the same coordinate axes, using the
same color for x⃗ and Ax⃗, etc.

Are there any eigenvectors and eigenvalues for this matrix A? If so, what are they?
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Multiplying Vectors by Matrices LINEAR TRANSFORMATIONS

Example. Consider the matrix A =
[
3 2
0 1

]
and the vectors x⃗ =

[
1
0

]
, y⃗ =

[
0
1

]
, v⃗ =

[
1
1

]
, and

w⃗ =
[
−1
2

]
.

Graph x⃗, y⃗, v⃗, w⃗, and Ax⃗, Ay⃗, Av⃗, and Aw⃗ all on the same coordinate axes, using the
same color for x⃗ and Ax⃗, etc.

Are there any eigenvectors and eigenvalues for this matrix A? If so, what are they?
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Multiplying Vectors by Matrices LINEAR TRANSFORMATIONS

Match the matrices with the before and after photos

A =
[
−1 1
−1 −1

]
B =
[
1 0
0 −1

]
C =
[
3 2
0 1

]
D =

[
2 0
0 2

]

Can you find any eigenvectors?
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Multiplying Vectors by Matrices LINEAR TRANSFORMATIONS

Match the matrices with the before and after photos

E =
[

0.5 0.5
−0.5 0.5

]
F =
[
−1 1
1 0

]
G =
[
3 0
0 0.5

]
H =

[
0 1
1 0

]

Can you find any eigenvectors?
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Multiplying Vectors by Matrices LINEAR TRANSFORMATIONS

Match the matrices with the before and after photos

I =
[
1 0
0 1

]
J =
[
1.25 0.75
0.75 1.25

]
K =
[
0.5 0
0 −3

]
L =
[
−1 0
0 1

]
M =

[
1 0.5
0 1

]

Can you find any eigenvectors?
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EIGENVALUES AND EIGENVECTORS

Eigenvalues and Eigenvectors

After completing this section, students should be able to:

• Define and eigenvalue and an eigenvector.

• Find the eigenvalues and eigenvectors of a matrix.
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EIGENVALUES AND EIGENVECTORS

Example. Consider the matrix A =
[
3 −2
1 0

]
and the vectors

u⃗ =
[
1
1

]
v⃗ =
[
2
1

]
w⃗ =
[
−1
1

]
Compute Au⃗, Av⃗, and Aw⃗.

Definition. For an n × n square matrix A, suppose there is a scalar λ and a non-zero
vector x⃗ such that Ax⃗ = λx⃗.

Then λ is called

and x⃗ is called
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EIGENVALUES AND EIGENVECTORS

Question. Does every matrix have eigenvalues and eigenvectors?

Question. How do we find the eigenvalues and eigenvectors for a matrix A?
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EIGENVALUES AND EIGENVECTORS

Example. Find the eigenvalues for the matrix A =
[
8 3
2 7

]
.

Example. Find the eigenvectors for the matrix A =
[
8 3
2 7

]
.

END OF VIDEO
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EIGENVALUES AND EIGENVECTORS

Recall: An eigenvector for a matrix A is a non-zero vector x⃗ such that ...

An eigenvalue for that eigenvector is ...
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EIGENVALUES AND EIGENVECTORS

Example. For the matrix A. =
[

1 −
1
3

−
1
3 1

]
, x⃗ =

[
1
1

]
is an eigenvector. Find the correspond-

ing eigenvalue. ’

Can you guess another eigenvector in another direction? Verify that is is an eigenvalue
and find its eigenvalue.
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EIGENVALUES AND EIGENVECTORS

Example. The matrix B =
[

1
4 1
1
2

3
4

]
has eigenvalues of 5

4 and −1
4. Find an eigenvectors for

these eigenvalues.
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EIGENVALUES AND EIGENVECTORS

Theory

To find the eigenvalues of A,

To find the eigenvectors of A, for each eigenvalue λ0,

Definition. Let A be an n×n matrix. The characteristic polynomial of A is the polynomial
p(λ) =
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EIGENVALUES AND EIGENVECTORS

Example. Find the eigenvalues and eigenvectors of the matrix

C =
[
2 −12
2 −8

]
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EIGENVALUES AND EIGENVECTORS

Example. Find the eigenvalues and eigenvectors of the matrix

D =


1 0 −1
2 1 0
2 0 −2
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EIGENVALUES AND EIGENVECTORS

Extra Example. Find the eigenvalues and eigenvectors of the matrix

E =
[
3 12
1 −1

]
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EIGENVALUES AND EIGENVECTORS

Extra Example. Find the eigenvalues and eigenvectors of the matrix

F =


−1 18 0
1 2 0
5 −3 −1
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PROPERTIES OF EIGENVALUES

Properties of Eigenvalues

After completing this section, students should be able to:

• From the eigenvalues of A, find eigenvalues for A−1, AT, A2, 5A, and other related
matrices.

• Predict if a matrix will have an eigenvalue of 0 or not from the determinant of A.

• Describe the relationship between the eigenvalues of a matrix and the trace and
determinant of the matrix.
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PROPERTIES OF EIGENVALUES

Example. Find the eigenvalues for this triangular matrix B =


5 8 11
0 2 3
0 0 9



Note. The eigenvalues for a triangular matrix are ...
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PROPERTIES OF EIGENVALUES

Example. Find the trace, determinant, and eigenvalues for each of these two matrices

C =
[
2 2
5 −1

]
D =


−3 0 0
9 7 0
−4 10 5

.

Note. The sum of the eigenvalues of a matrix is ...

the product of the eigenvalues of a matrix is ...
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PROPERTIES OF EIGENVALUES

Question. How are the eigenvalues of A related to the eigenvalues of AT and A−1?
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PROPERTIES OF EIGENVALUES

Question. Is it possible to have an eigenvalue of 0?

Note. A matrix A has an eigenvalue of 0 if and only if ...

END OF VIDEO
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PROPERTIES OF EIGENVALUES

Question. What is the relationship between the trace of matrix and its eigenvalues?

Question. What is the relationship between the determinant of a matrix and its eigen-
values?

Example. Suppose the 2 × 2 matrix M has trace of −5 and determinant of −14. What
are the eigenvalues of M?
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PROPERTIES OF EIGENVALUES

Question. Which of the following statements are true?

(a) If A is invertible, then 0 is an eigenvalue for A.

(b) If A is not invertible, then 0 is an eigenvalue of A.

(c) λ = 0 is never an eigenvalue for any matrix A

(d) λ = 0 is always an eigenvalue for any matrix A

Example. Without doing any math, find an eigenvalue for the matrix A =


6 6 7
3 3 −1
−2 −2 9
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PROPERTIES OF EIGENVALUES

True or False: Assume A is an n × n matrix with eigenvalue α and eigenvector v⃗.

1. True or False: If α is an eigenvalue for A, then α2 is an eigenvalue for A2.

2. True or False: If α is an eigenvalue for A, then 4α is an eigenvalue for 4A.

3. True or False: If A is invertible, and α is an eigenvalue for A, then
1
α

is an eigenvalue

for A−1.

4. True or False: If α and β are eigenvalues for A and B, respectively, then α · β is an
eigenvalue for AB.
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PROPERTIES OF EIGENVALUES

Example. If 7 is an eigenvalue of A with eigenvector v⃗, then find an eigenvalue of

(a) A3

(b) A−1

(c) AT

(d) A − I

(e) 6A
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PROPERTIES OF EIGENVALUES

Question. If A is an n × n matrix, what is the degree of its characteristic polynomial?

Question. How many solutions are there when you set a degree n polynomial equal
to 0? I.e. how many “roots” or “zeros” does a degree n polynomial have?

Question. How many eigenvalues does an n × n matrix have?
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DIAGONALIZING A MATRIX

Diagonalizing a Matrix

After completing this section, students should be able to:

• Explain what it means to diagonalize a square matrix.

• For an n × n matrix with distinct eigenvalues, use the eigenvalues and associated
eigenvectors to diagonalize the matrix
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DIAGONALIZING A MATRIX

Recall: A diagonal matrix is a square matrix ...

Definition. A square matrix A is said to be diagonalizable if ...

Example. Show that the matrix A =
[
−2 2
−6 5

]
is diagonalizable. Hint: try using D =

[
2 0
0 1

]
and P =

[
1 2
2 3

]
.
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DIAGONALIZING A MATRIX

Example. Find matrices P and D to diagonalize the matrix A =
[

3 1
−2 0

]
.
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DIAGONALIZING A MATRIX

Summary:

Suppose A is an n× n matrix with n distinct real eigenvalues. Then A can be diagonal-
ized as follows:

END OF VIDEO
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DIAGONALIZING A MATRIX

True or False: True or False: If we multiply an n × n matrix A on the left by an n × n
diagonal matrix D, to get DA, then each row of A gets multiplied by a corresponding
diagonal entry of D.

True or False: If we multiply an n×n matrix A on the right by an n×n diagonal matrix
D, to get AD, then each column of A gets multiplied by a corresponding diagonal entry
of D.
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DIAGONALIZING A MATRIX

True or False: If B is a matrix whose columns are the vectors b⃗1, b⃗2, b⃗3, · · · b⃗n, then AB is
a matrix whose columns are Ab⃗1,Ab⃗2,Ab⃗3, · · ·Ab⃗n.

True or False: If A is an n× n matrix with eigenvalues λ1, λ2, · · ·λn, and corresponding
eigenvectors b⃗1, b⃗2, · · · b⃗n, and B is the matrix with columns b⃗1, b⃗2, b⃗3, · · · b⃗n then AB = BD.

Hint: think about the previous two statements.
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DIAGONALIZING A MATRIX

Fact: If the n × n matrix A has n distinct eigenvalues, then the matrix whose columns
are the eigenvectors is invertible.

Question. How does the facts above show that an n × n matrix A with n distinct
eigenvalues is diagonalizable?
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DIAGONALIZING A MATRIX

Example. Consider the matrix B =


6 −3 7
4 1 5
4 −3 9


(a) Use technology to find the eigenvalues and eigenvectors for B

(b) Diagonalize B as PDP−1 for a diagonal matrix D and an invertible matrix P.

(c) Use technology to verify that when you multiply PDP−1 you do in fact get back B.
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DIAGONALIZING A MATRIX

Example. Diagonalize the matrix C =
[
7 −8
4 −5

]
(by hand). Check your answer using

technology.
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DIAGONALIZING A MATRIX

Extra Example. Diagonalize the matrix M =
[
2 −2
0 0

]
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DIAGONALIZING A MATRIX

Example. Diagonalize the matrix N =


1 2 1
0 −3 −2
2 4 2
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DIAGONALIZING A MATRIX

Example. For the matrix C =
[
7 −8
4 −5

]
, compute C5.

Hint: we diagonalized this matrix in a previous example. Try working with the
diagonalization.
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DIAGONALIZING A MATRIX

Example. Compute the determinant of the matrix B =


6 −3 7
4 1 5
4 −3 9


Hint: we diagonalized this matrix in a previous example. Try working with the
diagonalization.
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DIAGONALIZING A MATRIX

Extra Example. Compute A5 if A = PDP−1, where P =
[
2 1
7 3

]
and D =

[
2 0
0 −1

]
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DIAGONALIZING A MATRIX

Extra Example. Find the determinant of A, if A = PDP−1 for P =


1 0 2
3 3 −1
4 3 0

 and D =
4 0 0
0 −3 0
0 0 2
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DOT PRODUCT AND ORTHOGONAL VECTORS

Dot product and orthogonal vectors

After completing this section, students should be able to:

• Compute the dot product of two vectors

• Find the length of a vector

• Decide if two vectors are parallel, perpendicular, or neither

• Find two unit vectors that are parallel to a given (non-zero) vector

• Define orthogonal vectors and orthonormal vectors

• Determine if a set of vectors is orthogonal and / or orthonormal

• Convert a set of orthogonal vectors to a set of orthonormal vectors by rescaling the
vectors
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Dot Product Video DOT PRODUCT AND ORTHOGONAL VECTORS

Dot Product Video

Example. The dot product of the two vectors a⃗ =


2
−1
3

 and b⃗ =


5
1
2

 is given by

Definition. The dot product of v⃗ =


v1

v2
...

vn

 and w⃗ =


w1

w2
...

wn

 is given by
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Dot Product Video DOT PRODUCT AND ORTHOGONAL VECTORS

Properties of dot product:

Suppose u⃗, v⃗ and w⃗ are vectors, all of the same dimension, and c is a scalar.

1. u⃗ · v⃗ =

2. u⃗ · (v⃗ + w⃗) =

3. (cu⃗) · v⃗ =

4. u⃗ · u⃗ ≥
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Unit Vectors Video DOT PRODUCT AND ORTHOGONAL VECTORS

Unit Vectors Video

Example. The length of the vector a⃗ =
[
2
5

]
is

Example. The length of the vector b⃗ =


2
−3
4

 is

Definition. The length of the vector v⃗ =


v1

v2
...

vn

 is given by
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Unit Vectors Video DOT PRODUCT AND ORTHOGONAL VECTORS

Definition. A unit vector is

Example. Is a⃗ =


1
2
2

 a unit vector?

Example. For the vector a⃗ =


1
2
2

 find a constant c such that c⃗b is a unit vector.

Note. For any vector v⃗ (that is not the zero vector), the vector is a unit
vector.
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Unit Vectors Video DOT PRODUCT AND ORTHOGONAL VECTORS

Example. Rescale the vector b⃗ =
[
7
3

]
to be a unit vector.
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Orthogonal Vectors Video DOT PRODUCT AND ORTHOGONAL VECTORS

Orthogonal Vectors Video

Definition. Two vectors v⃗ and w⃗ are said to be orthogonal if

Example. Which of the following pairs of vectors are orthogonal?

a) a⃗ =
[
3
4

]
and b⃗ =

[
−4
3

]

b) c⃗ =
[
1
2

]
and d⃗ =

[
2
1

]
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Orthogonal Vectors Video DOT PRODUCT AND ORTHOGONAL VECTORS

Definition. An orthogonal set of vectors is a collection of vectors such

Definition. An orthonormal set of vectors is a collection of vectors

Example. Show that the set of vectors a⃗ =


1
4
−1

, b⃗ =


11
−1
7

, c⃗ =


3
−2
−5

 is an orthogonal set.

Is it an orthonormal set?

END OF VIDEOS
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Perpendicular and Parallel Vectors DOT PRODUCT AND ORTHOGONAL VECTORS

Perpendicular and Parallel Vectors

Example. Find the dot product of the two vectors a⃗ =


4
−1
2

 and b⃗ =


3
5
6

.

Example. Graph the two vectors u⃗ =
[

3
−2

]
and v⃗ =

[
4
6

]
and estimate the angle between

them.
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Perpendicular and Parallel Vectors DOT PRODUCT AND ORTHOGONAL VECTORS

What is their dot product?

Note. For any two non-zero vectors a⃗ =
[
a1

a2

]
and b⃗ =

[
b1

b2

]
, show that a⃗ and b⃗ are

perpendicular if and only if their dot product is 0. Hint: what do you know about the
rise over run for perpendicular vectors?
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Perpendicular and Parallel Vectors DOT PRODUCT AND ORTHOGONAL VECTORS

.

Fact: For vectors a⃗ and b⃗ of any dimension, a⃗ and b⃗ are perpendicular if and only if. ...

Definition. Two vectors u⃗ and v⃗ are called parallel vectors if ...

Extra Example. Find two unit vectors parallel to m⃗ =


2
−4
4

?
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Perpendicular and Parallel Vectors DOT PRODUCT AND ORTHOGONAL VECTORS

Example. Determine whether the following pairs of vectors are parallel, perpendicular,
or neither.

A. u⃗ =


6
3
−9

 and v⃗ =


−4
−2
6

.

B. w⃗ =


5
−4
3

 and z⃗ =


2
1
−2

.

C. q⃗ =


2
−1
6

 and r⃗ =


1
−2
3

.
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Orthogonal and orthonormal vectors DOT PRODUCT AND ORTHOGONAL VECTORS

Orthogonal and orthonormal vectors

Definition. Two vectors are called orthogonal if ...

Definition. Two vectors are called orthonormal if ...

Definition. A set of vectors is called orthogonal if ...

Definition. A set of vectors is called orthonormal if ...
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Orthogonal and orthonormal vectors DOT PRODUCT AND ORTHOGONAL VECTORS

Example. Is there a value of k such that the following vectors form an orthogonal set?
If so, find k. If not, explain why not.

u⃗ =


1
−3
2
−1

, v⃗ =


4
2
1
0

, w⃗ =


−1
0
k
7
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Orthogonal and orthonormal vectors DOT PRODUCT AND ORTHOGONAL VECTORS

Example. Is there a value of k such that the following vectors form an orthogonal set?
If so, find k. If not, explain why not.

u⃗ =


1
4
−1

, v⃗ =


7
−1
3

, w⃗ =


4
1
k
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Orthogonal and orthonormal vectors DOT PRODUCT AND ORTHOGONAL VECTORS

Recall: Multiplying a vector by a scalar k multiplies its length by ...
Dividing a vector by its length turns it into ...

Example. Verify that the following set of vectors forms an orthogonal set. Then rescale
them to form an orthonormal set.

u⃗1 =


1
2
3

, u⃗2 =


5
−4
1

, u⃗3 =


1
1
−1
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ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Orthogonal Matrices and Symmetric Matrices

After completing this section, students should be able to:

• Determine if a matrix is orthogonal (orthonormal) or not

• Explain why the inverse of an orthogonal matrix is its transpose.

• Describe properties of the eigenvalues and eigenvectors of symmetric matrices

• Describe a property of the eigenvalues of a symmetric matrix of the form ATA

• Orthogonally diagonalize a symmetric matrix
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Orthogonal Matrices Video ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Orthogonal Matrices Video

Definition. An orthogonal matrix is a square matrix with ...

Example. Verify that B =


1
√

3
1
√

6
−

1
√

2
−

1
√

3
2
√

6
0

1
√

3
1
√

6
1
√

2

 is an orthogonal matrix.

Example. Compute BTB.
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Orthogonal Matrices Video ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Properties of orthogonal matrices:

For an orthogonal matrix Q,

1. QTQ =

2. Q−1 =

3. QQT =
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Symmetric Matrices and Eigenvalues and Eigenvectors VideoORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Symmetric Matrices and Eigenvalues and Eigenvectors Video

Example. Find the eigenvalues and eigenvectors of the symmetric matrix A =


1 2 3
2 1 3
3 3 0
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Symmetric Matrices and Eigenvalues and Eigenvectors VideoORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Theorem. If A is a symmetric matrix, then the eigenvectors associated with distinct
eigenvalues are ...
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Symmetric Matrices and Eigenvalues and Eigenvectors VideoORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Theorem. If A is a symmetric matrix, then all of its eigenvalues are ...
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Diagonalizing Symmetric Matrices Video ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Diagonalizing Symmetric Matrices Video

Recall: If A is an n × n matrix with n distinct real eigenvalues, then A can be written
as ...

Theorem. If A is an n × n symmetric matrix with n distinct real eigenvalues, then A
can be written as ...
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Diagonalizing Symmetric Matrices Video ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Theorem. If A is an n × n symmetric matrix with n distinct real eigenvalues, then A
can be written as PDP−1, where D is a diagonal matrix and P is an orthogonal matrix.
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Diagonalizing Symmetric Matrices Video ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Example. Orthogonally diagonalize the matrix A =
[
5 2
2 8

]

END OF VIDEOS
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Orthogonal Matrices ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Orthogonal Matrices

Definition. An orthogonal matrix (or orthonormal matrix is a matrix ...

Example. Verify that the following matrix is an orthonormal matrix.

A =
[
0.96 −0.28
0.28 0.96

]

What does the matrix A do to an image on the plane?
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Orthogonal Matrices ORTHOGONAL MATRICES AND SYMMETRIC MATRICES
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Orthogonal Matrices ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Example. Verify that the following matrix is an orthonormal matrix.

B =


0 1 0
−1 0 0
0 0 −1
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Orthogonal Matrices ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Example. For the matrix A and the matrix B,

(i) compute the product ATA and BTB

(ii) compute A−1 and B−1

(iii) compute AAT and BBT

A =
[
0.96 −0.28
0.28 0.96

]
B =


0 1 0
−1 0 0
0 0 −1
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Orthogonal Matrices ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

For any orthonormal matrix C,

1. The dot product of any two distinct columns is and the dot product of any
column with itself is .

2. CTC =

3. C−1 =

4. CCT =

5. The dot product of any two distinct rows is , and the dot product of any row
with itself is .
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Geometric interpretation ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Geometric interpretation

A 2 × 2 orthogonal matrix corresponds to a linear combination that is either

• .

• .

An n × n orthogonal matrix corresponds to a motion of n-dimensional space that is a
”rigid motion” i.e. it preserves

• .

• .

Why?
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Symmetric matrices and their eigenvalues and eigenvectors ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Symmetric matrices and their eigenvalues and eigenvectors

Example. True or False:

1. True or False: The eigenvalues of a symmetric matrix are always real numbers.

2. True or False: The eigenvalues of a symmetric matrix are always non-negative real
numbers.

3. True or False: The eigenvalues of the symmetric matrix ATA are always non-
negative real numbers.
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Symmetric matrices and their eigenvalues and eigenvectors ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

4. True or False: The eigenvectors of a symmetric matrix are always orthogonal.

5. True or False: The eigenvectors of a symmetric matrix are always orthoNORMAL.

6. True or False: A symmetric matrix A can always be diagonalized as A = PDP−1

where P is an orthogonal, invertible matrix and D is a diagonal matrix.

7. True or False: If M is orthogonally diagonalizable, then it is symmetric.
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Symmetric matrices and their eigenvalues and eigenvectors ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Example. The eigenvalues and corresponding eigenvectors for a symmetric matrix A
are given. Find matrices D and P that orthogonally diagonalize A.

λ1 = 2, u⃗1 =

[
1
2

]
, λ2 = −3, u⃗2 =

[
−2
1

]
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Symmetric matrices and their eigenvalues and eigenvectors ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Example. The eigenvalues and corresponding eigenvectors for a symmetric matrix A
are given. Find matrices D and P that orthogonally diagonalize A.

λ1 = 0, u⃗1 =


1
1
1

, λ2 = 2, u⃗2 =


1
−1
0

, λ3 = −1, u⃗2 =


−1
−1
2
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Symmetric matrices and their eigenvalues and eigenvectors ORTHOGONAL MATRICES AND SYMMETRIC MATRICES

Extra Example. Use Python to find the eigenvalues and eigenvectors of the symmetric
matrix A. Then find an orthogonal matrix P and a diagonal matrix D such that
A = PDP−1.

A =


1 2 3
2 1 3
3 3 0



276



LINEARLY INDEPENDENT VECTORS

Linearly Independent Vectors

After completing this section, students should be able to:

1. Define a linear combination of vectors.

2. Determine if a set of vectors is linearly dependent or linearly independent.
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LINEARLY INDEPENDENT VECTORS

Example. Consider the three vectors a⃗ =


1
2
3
4

, b⃗ =


1
1
1
1

, and c⃗ =


1
0
0
0

.
A linear combination of these vectors is any sum of scalar multiples of the vectors, such
as:

• 3a⃗ − 4⃗b

• a⃗ + 1
2b⃗ − 2c⃗

Definition. A linear combination of vectors v⃗1, v⃗2, v⃗3, · · · v⃗n is any sum of scalar multiples
of the vectors c1v⃗1 + c2v⃗2 + c3v⃗3 + · · · cnv⃗n.
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LINEARLY INDEPENDENT VECTORS

Example. Is the vector d⃗ =


10
9
8
7

 a linear combination of a⃗ =


1
2
3
4

, b⃗ =


1
1
1
1

, and c⃗ =


1
0
0
0

?
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LINEARLY INDEPENDENT VECTORS

Definition. The vectors v⃗1, v⃗2, v⃗3, · · · v⃗n are called linearly dependent if ...

Equivalently, v⃗1, v⃗2, v⃗3, · · · v⃗n are linearly dependent if there are scalars x1, x2, · · · xn, not all
zero, such that ...

Definition. The vectors v⃗1, v⃗2, v⃗3, · · · v⃗n are called linearly independent if ...

Equivalently, v⃗1, v⃗2, v⃗3, · · · v⃗n are linearly independent if the only possible scalars x1, x2, · · · xn

that make x1v⃗1 + x2v⃗2 + x3v⃗3 + · · · xnv⃗n = 0 are ...

280



LINEARLY INDEPENDENT VECTORS

Example. Are these three vectors linearly dependent or linearly independent?

u⃗ =


5
1
0

, v⃗ =


7
2
−6

, and w⃗ =


−2
−1
8



END OF VIDEOS
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LINEARLY INDEPENDENT VECTORS

Review. The vectors v⃗1, v⃗2, v⃗3, . . . , v⃗n are linearly dependent if ...

Equivalently, v⃗1, v⃗2, v⃗3, . . . , v⃗n are linearly dependent if ...

Review. The vectors v⃗1, v⃗2, v⃗3, . . . , v⃗n are linearly independent if ...

Equivalently, v⃗1, v⃗2, v⃗3, . . . , v⃗n are linearly independent if ...
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LINEARLY INDEPENDENT VECTORS

Example. Determine by inspection (that is, with only minimal computation) if the
given vectors form a linearly dependent or linearly independent set.

A. u⃗ =


6
−4
2

 and v⃗ =


9
−6
3



B. u⃗ =


6
−4
2

 and v⃗ =


3
−2
4
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LINEARLY INDEPENDENT VECTORS

C. u⃗ =


1
−8
3

, v⃗ =


0
0
0

, w⃗ =


−7
1
12



D. u⃗ =


1
2
3
4

, v⃗ =


1
2
3
4

, and w⃗ =


4
3
2
1
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LINEARLY INDEPENDENT VECTORS

Example. Determine if the vectors are linearly dependent or independent. If they are
linearly dependent, find a linear combination of them that equals the zero vector.

u⃗ =
[
−3
1

]
, v⃗ =

[
−4
−2

]
, w⃗ =

[
9
2

]
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LINEARLY INDEPENDENT VECTORS

Example. Determine if the vectors are linearly dependent or independent. If they are
linearly dependent, find a linear combination of them that equals the zero vector.

u⃗ =


3
−1
2

, v⃗ =


0
4
1

, w⃗ =


2
4
7
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LINEARLY INDEPENDENT VECTORS

Example. Determine if the vectors are linearly dependent or independent. If they are
linearly dependent, find a linear combination of them that equals the zero vector.

u⃗ =


1
2
3
3

, v⃗ =


1
6
6
5

, w⃗ =


−1
2
0
−1
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Linear Independence and Orthogonality LINEARLY INDEPENDENT VECTORS

Linear Independence and Orthogonality

Question. If v⃗1, v⃗2, v⃗3, . . . , v⃗n are orthogonal, are they necessarily linearly independent?

Question. If v⃗1, v⃗2, v⃗3, . . . , v⃗n are all non-zero and orthogonal, are they necessarily lin-
early independent?
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Linear Independence and Orthogonality LINEARLY INDEPENDENT VECTORS

Question. If v⃗1, v⃗2, v⃗3, . . . , v⃗n are linearly independent, are they necessarily orthogonal?

Note. Our next topic, the Gram-Schmidt algorithm, is a way to. ...
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GRAM-SCHMIDT ORTHONORMALIZATION

Gram-Schmidt Orthonormalization

After completing this section, students should be able to:

• Explain the Gram-Schmidt algorithm.

• Convert a set of linearly independent vectors into the same size set of orthogonal
vectors using the Gram-Schmidt algorithm.

• Explain why a set of orthogonal vectors is linearly independent.
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GRAM-SCHMIDT ORTHONORMALIZATION

Question. Suppose we have n vectors v⃗1, v⃗2, v⃗3, . . . v⃗n, that are linearly independent.
How can we use them to construct n vectors w⃗1, w⃗2, w⃗3, . . . w⃗n that are orthogonal?

Step 1: Fix v⃗1

Step 2: Fix v⃗2

Step 3: Fix v⃗3.

...

Step n: Fix v⃗n
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GRAM-SCHMIDT ORTHONORMALIZATION

Question. Are the new vectors w⃗1, w⃗2, w⃗3, . . . w⃗n still linearly independent?

Question. Once we have w⃗1, w⃗2, w⃗3, . . . w⃗n, a set of n non-zero orthogonal vectors, how
can we build a set of n orthonormal vectors?
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GRAM-SCHMIDT ORTHONORMALIZATION

Example. Apply the Gram-Schmidt algorithm to the following set of vectors to get an
orthogonal set of vectors.

v⃗1 =


1
0
1
1

, v⃗2 =


0
2
0
3

, and v⃗3 =


−3
−1
1
5



END OF VIDEO
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GRAM-SCHMIDT ORTHONORMALIZATION

Example. Apply the Gram-Schmidt algorithm to the following set of vectors to get an
orthogonal set of vectors.

v⃗1 =


1
0
−2

, v⃗2 =


1
3
3

.

Convert them to an orthonormal set of vectors.
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GRAM-SCHMIDT ORTHONORMALIZATION

Example. Apply the Gram-Schmidt algorithm to the following set of vectors to get an
orthogonal set of vectors.

v⃗1 =


1
1
0
−1

, v⃗2 =


1
3
0
1

, v⃗3 =


4
2
2
0
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GRAM-SCHMIDT ORTHONORMALIZATION

Example. Apply the Gram-Schmidt algorithm to the following set of vectors to get an
orthogonal set of vectors.

v⃗1 =


1
1
0
−1

, v⃗2 =


1
3
0
1

, v⃗3 =


4
2
2
0

, v⃗4 =


0
1
1
1

,

296



GRAM-SCHMIDT ORTHONORMALIZATION

Example. Apply the Gram-Schmidt algorithm to the following set of vectors to get an
orthogonal set of vectors.

v⃗1 =


3
1
−1
3

, v⃗2 =


−5
1
5
−7

, v⃗3 =


1
1
−2
8



297



THE EIGENVALUES OF ATA

The Eigenvalues of ATA
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THE EIGENVALUES OF ATA

Theorem. The eigenvalues of a matrix B = ATA are all non-negative real numbers.
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SINGULAR VALUE DECOMPOSITION, PART 1

Singular Value Decomposition, Part 1

After completing this section, students should be able to:

• Explain what a singular value decomposition is

• Find a singular value decomposition for a matrix
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Introduction Video SINGULAR VALUE DECOMPOSITION, PART 1

Introduction Video

Recall: An n × n square matrix A is diagonalizable if there is a diagonal matrix D and
an invertible matrix P such that ...

Recall: For an n × n symmetric matrix S, we can diagonalize S in such a way that ...
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Introduction Video SINGULAR VALUE DECOMPOSITION, PART 1

Recall: An n × n matrix is called a diagonal matrix if ...

Definition. An m × n matrix is called a diagonal matrix if

Definition. For an m×n matrix A, the singular value decomposition (SVD) of A is way
of writing A as ...
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Introduction Video SINGULAR VALUE DECOMPOSITION, PART 1

Example. Consider the matrix A =


0 2
1 3
−2 0

. The following matrices can be used to

construct a SVD of A:

U =



3
√

35

1
√

10
−

3
√

14√
5
√

7
0

√
2
√

7
−

1
√

35

3
√

10

1
√

14


Σ =


√

14 0
0 2
0 0

 V =


1
√

10
−

3
√

10
3
√

10

1
√

10
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How Do We Find It Video SINGULAR VALUE DECOMPOSITION, PART 1

How Do We Find It Video

Question. For an m × n matrix A, how do we find orthogonal matrices U, and V, and
a diagonal matrix Σ, such that A = UΣVT?

First consider the case when A is a “tall” matrix:
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How Do We Find It Video SINGULAR VALUE DECOMPOSITION, PART 1

Question. For an m × n matrix A, how do we find orthogonal matrices U, and V, and
a diagonal matrix Σ, such that A = UΣVT?

Next consider the case when A is a “wide” matrix:
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How Do We Find It Video SINGULAR VALUE DECOMPOSITION, PART 1

Example. Find the singular value decomposition for the matrix A =


1 2
2 0
0 2

.

END OF VIDEOS
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SVD Examples SINGULAR VALUE DECOMPOSITION, PART 1

SVD Examples

Review. A singular value decomposition for a matrix A is ...

Example. Choose the matrices that correspond to U, Σ, and VT in the singular value
decomposition M = UΣVT for the matrix

M =
[
4 11 14
8 7 −2

]

1.


3
√

10
10

−

√
10

10√
10

10
3
√

10
10


2.


1
3

2
3

2
3

2
3

1
3
−

2
3

−
4
9

4
9
−

2
9


3.
[
6
√

10 0 0
0 3

√
10 0

]
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SVD Examples SINGULAR VALUE DECOMPOSITION, PART 1

Order the steps for finding the SVD of a ”tall” matrix.

• Compute
Av⃗i

σi
, where the vectors v⃗i are and the

numbersσi are . These vectors will be

• Compute ATA, which is a matrix.

• Build the diagonal matrix Σ out of .

• Apply the Gram Schmidt orthonormalization process to make these vectors or-
thogonal, and rescale as needed.

• Rescale the vectors to have length 1.

• Build the matrix V from these vectors.

• Build the matrix U from these vectors.

• Find additional vectors that are linearly independent to these ones, if needed, until
you have enough vectors to fill out the columns of the matrix you are building.

• Find the eigenvectors of ATA, which will be vectors.

• Find the eigenvalues of ATA, which are numbers.
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SVD Examples SINGULAR VALUE DECOMPOSITION, PART 1

If A is a ”wide” matrix instead of a ”tall” matrix, then ...
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SVD Examples SINGULAR VALUE DECOMPOSITION, PART 1

Example. Find the singular value decomposition for the matrix A =


1 1
3 2
3 −1
2 1

.
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SVD Examples SINGULAR VALUE DECOMPOSITION, PART 1

Example. Find the singular value decomposition for the matrix A =


1 −1
−2 2
2 −2

.
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SVD Examples SINGULAR VALUE DECOMPOSITION, PART 1

Extra Example. Find the singular value decomposition for the matrix A =
[
7 5 0
1 5 0

]
.
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SVD Examples SINGULAR VALUE DECOMPOSITION, PART 1

Extra Example. Find the singular value decomposition for the matrix A =
[
2 −1
2 2

]
.
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SINGULAR VALUE DECOMPOSITION, PART 2

Singular Value Decomposition, Part 2

After completing this section, students should be able to:

• Explain why in the the singular value decomposition algorithm works, including

– why the eigenvalues of ATA are non-negative real numbers

– why V is orthogonal

– why the columns of U of the form
Av⃗i

σi
are orthogonal

– why UΣVT is equal to A

– why it doesn’t matter much what the ”extra” columns of U are, past the ones

of the form
Av⃗i

σi

• Show that the non-zero eigenvalues for ATA are also the non-zero eigenvalues for
AAT.

• Show that the vectors we use for the first few columns of U,
Avi

σi
, are eigenvectors

for AAT.
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SVD - Why Does It Work - Video SINGULAR VALUE DECOMPOSITION, PART 2

SVD - Why Does It Work - Video

Recall: We used the following steps to find the singular value decomposition for a
“tall” matrix A.

1. Find the eigenvalues λi for ATA and take their square roots σi =
√
λi to build Σ.

2. Find the eigenvectors vi for each eigenvalue λi to build V.

3. Compute
Avi

σi
(for non-zero σi) for the first few columns of U.

Complete the matrix U using the Graham-Schmidt orthogonalization process to
find other columns for U.

To show this makes a legit SVD for A, we need to show that:

• A = UΣVT

• V is an orthogonal matrix.

• U is an orthogonal matrix.

In addition we will see that:

• The non-zero eigenvalues for ATA are also the non-zero eigenvalues for AAT.

• The vectors we use for the first few columns of U,
Avi

σi
, are eigenvectors for AAT.
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SVD - Why Does It Work - Video SINGULAR VALUE DECOMPOSITION, PART 2

Show: V is an orthogonal matrix.
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SVD - Why Does It Work - Video SINGULAR VALUE DECOMPOSITION, PART 2

Show: U is an orthogonal matrix.
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SVD - Why Does It Work - Video SINGULAR VALUE DECOMPOSITION, PART 2

Show: A = UΣVT
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SVD - Why Does It Work - Video SINGULAR VALUE DECOMPOSITION, PART 2

Show: The non-zero eigenvalues for ATA are also the non-zero eigenvalues for AAT.
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SVD - Why Does It Work - Video SINGULAR VALUE DECOMPOSITION, PART 2

Show: The vectors we use for the first few columns of U,
Avi

σi
, are eigenvectors for

AAT.

END of VIDEO
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Why it works - Review SINGULAR VALUE DECOMPOSITION, PART 2

Why it works - Review

Review. How do we know that we can take the square roots of the eigenvalues of ATA
(to get the singular values of A) without running into trouble taking the square root of
a negative number, or a complex number?
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Why it works - Review SINGULAR VALUE DECOMPOSITION, PART 2

Review. How do we know that V is an orthonormal matrix?
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Why it works - Review SINGULAR VALUE DECOMPOSITION, PART 2

Review. How do we know that the columns of U of the form
Av⃗i

σi
are orthonormal?
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Why it works - Review SINGULAR VALUE DECOMPOSITION, PART 2

Review. How do we know that UΣVT really works out to equal A?
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Why it works - Review SINGULAR VALUE DECOMPOSITION, PART 2

We have two methods for finding the SVD of a wide matrix A:

1. Method 1: Set C = AT, find C = U1Σ1VT
1 and then write A = (U1Σ1VT

1 )T = V1Σ
T
1 UT

1 ,
where

(a) Σ1 is built out of the eigenvalues of ...

(b) V1 is built out of the eigenvectors of ...

(c) U1 is built from ...

2. Method 2: Build A = U2Σ2VT
2 directly, where

(a) Σ1 is built out of the eigenvalues of ...

(b) V2 is built from ...

(c) U2 is built from ...

Using the following facts:

1. The non-zero eigenvalues for ATA are also the non-zero eigenvalues for AAT.

2. The vectors we use for the first few columns of U,
Avi

σi
, are eigenvectors for AAT.

Show that both methods end up with the same matrices (besides possibly the last few
columns in U1 vs. V2.
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Why it works - Review SINGULAR VALUE DECOMPOSITION, PART 2

Question. If A is a symmetric matrix, its ordinary diagonalization PDP−1 is already
an orthogonal diagonalization. Is it is the same as its singular value decomposition
UΣVT?
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Why it works - Review SINGULAR VALUE DECOMPOSITION, PART 2

Question. Why does it not really matter what we do to ”fill out” U with remaining
columns?
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S8.5 APPLICATION: IMAGE COMPRESSION

S8.5 Application: Image Compression

After completing this lesson, students should be able to:

• Explain how a singular value decomposition can be used to approximate a matrix
using smaller amounts of data

• Explain how a singular value decomposition is used in image compression
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S8.5 APPLICATION: IMAGE COMPRESSION

Question. Why does it not really matter what we do to ”fill out” U with remaining
columns?
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Writing A with less bytes of data S8.5 APPLICATION: IMAGE COMPRESSION

Writing A with less bytes of data

Suppose A is a tall m × n matrix.

• The singular value matrix Σ contains a lot of zeros.

• Each row of zeros in Σmeans a column of U that we can ignore.

• Each column of zeros in Σ means a row of VT (i.e. a column of V) that we can
ignore.

• If Σ has a lot of zero rows and columns, then the SVD of A allows us to use fewer
numbers than A itself.
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Writing A with less bytes of data S8.5 APPLICATION: IMAGE COMPRESSION

Example. Suppose the original A is an N × N matrix for some large number N, but it
has only 20 non-zero singular values.

To write out A directly, how many numbers do we need to write down?

If we write down the SVD instead: UΣVT, how many numbers do we need to write
down?
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Writing A with less bytes of data S8.5 APPLICATION: IMAGE COMPRESSION

Example. Suppose the original A is an M × N tall matrix for some large numbers M
and N, but it has only r non-zero singular values.

To write out A directly, how many numbers do we need to write down?

If we write down the SVD instead: UΣVT, how many numbers do we need to write
down?
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Approximating A S8.5 APPLICATION: IMAGE COMPRESSION

Approximating A

• Often some of the non-zero singular values of A are much smaller than others.

• By replacing the smaller singular values in Σwith 0’s we can approximate A with
smaller size matrices.

• We can make successive approximations to A by using just the first singular value
(σ1), then using the first two (σ1 and σ2), the first three (σ1, σ2, σ3), etc.
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Approximating A S8.5 APPLICATION: IMAGE COMPRESSION

• We can make successive approximations to A by using just the first singular value
(σ1), then using the first two (σ1 and σ2), the first three (σ1, σ2, σ3), etc.

– Using just σ1 in UΣVT corresponds to calculating σ1u⃗1v⃗1
T

– Using just σ1 and σ2 in UΣVT corresponds to calculating σ1u⃗1v⃗1
T
+ σ2u⃗2v⃗2

T

– Using just σ1, σ2, σ3 in UΣVT corresponds to calculating σ1u⃗1v⃗1
T
+ σ2u⃗2v⃗2

T
+

σ3u⃗3v⃗3
T
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Image Compression S8.5 APPLICATION: IMAGE COMPRESSION

Image Compression

An image is a large matrix, one element for each pixel.

If nearby pixels are related, then the picture is a good candidate for image compression
using SVD.

See https://timbaumann.info/svd-image-compression-demo/ to see what it looks like
to do successive approximations using more and more singular values.

336



APPLICATION: PRINCIPAL COMPONENT ANALYSIS

Application: Principal Component Analysis

After completing this section, students should be able to:

• Give a rough qualitative description of the goals of principal component analysis

• Outline the main steps than need to be done for principal component analysis
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APPLICATION: PRINCIPAL COMPONENT ANALYSIS

Suppose you have a data set with N observations, each with p variables. This can be
written as an N × p matrix. Each row is one observation.

Or it can be written as a p ×N matrix, and each column is one observation.

Example. If you have 150 students, each with 15 homework scores, what dimension is
the data matrix?

Example. If you have 45 factories, each with 8 values of various types of pollution,
what dimension is the data matrix X?

• If we imagine plotting the data from 50 people’s age and salaries, how many axes
on our graph do we need? How many points do we plot?

• If we have 75 people and three characteristics, age, how many axes on our graph
do we need and how many points do we plot?

• For N observations of p variables, how many axes will we need? How many points
will we plot?
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APPLICATION: PRINCIPAL COMPONENT ANALYSIS

Often data is clustered around a line, or a plane, or a k=dimesional hyperplane where
k is less than the dimension that we started with.

Example. This data set is clustered around a line.

PCA identifies the line that it is clustered around, that explains most of the variance
(variability) of the data. The perpendicular direction to this line explains less of the
variability.
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APPLICATION: PRINCIPAL COMPONENT ANALYSIS

Example. Estimate the orthogonal directions that explain the most variance, second
most, and third most variance for this 3-d data set, in such a way that these directions
are perpendicular to each other.
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What’s the point? APPLICATION: PRINCIPAL COMPONENT ANALYSIS

What’s the point?

The goals of PCA are as follows:

1. Find the perpendicular directions that explain from the most to the least variance
of the data. These will correspond to the of a related matrix (called
the covariance matrix). These perpendicular directions are called the principal
components.

2. Describe the proportion of the variance in the data that comes from each of these
directions. This will come from the of this related matrix (the
covariance matrix).

3. Rewrite the data in new coordinates. Intuitively, this corresponds to ”turning our
heads” so that the principal components now just look like the x-axis, y-axis, etc.
This new frame of reference gives us ”uncorrelated” variables.

4. Simplify the dimension of the data set by ignoring all but the first few compo-
nents of the data corresponding to the largest proportion of the variance. This
corresponds to projecting the data onto ints first few principal components.
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How do we do it? APPLICATION: PRINCIPAL COMPONENT ANALYSIS

How do we do it?

Example. Suppose our observations are the ages, heights, and weights of 1000 NBA
basketball players.

The first few individuals can be given in this table (matrix):

player1 player2 player3 player4
age 22.0 27.0 30.0 29.0

height 213.36 210.82 208.28 210.82 · · ·
weight 106.59 106.59 106.59 111.13

Or, in this table (matrix):

age height weight
player1 22.0 213.36 106.59
player2 27.0 210.82 106.59
player3 30.0 208.28 106.59
player4 29.0 210.82 111.13
... ... ... ...

So we have 1000 observations of 3 variables.
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How do we do it? APPLICATION: PRINCIPAL COMPONENT ANALYSIS

1. First, shift this data set so that each variable has a mean of 0. We can do this by
subtracting the mean of each variable from each observation.

Compute the mean of each variable.

age mean = 28.11
height mean = 200.76
weight mean = 100.33

Subtract these means from each data point.

age height weight
player1 -6.11 12.60 6.26
player2 -1.11 10.06 6.26
player3 1.89 7.52 6.26
player4 0.89 10.06 10.80

2. Usually we also rescale the data by dividing each observation of each variable by
the standard deviation of that variable.

Let B be the matrix with these new entries.
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How do we do it? APPLICATION: PRINCIPAL COMPONENT ANALYSIS

3. Now compute (essentially) the SVD of B: which means we do the matrix multipli-
cation and compute its eigenvalues and eigenvectors.

• The eigenvectors of BTB give you the principal components ...

Recall: where do these eigenvectors appear in the SVD UΣVT?

• The eigenvalues of give you the proportion of the variance of the data in
the direction of each of the principal components...

Recall: what do these eigenvalues have to do with the singular values in Σ?

4. The eigenvectors with the largest eigenvalues are most important, since they ex-
plain most of the variance of the data.

5. We can simplify the data set by ”projecting” onto the hyperplane of the first, say,
k principal components, so that we only need k variables to represent the data,
without much loss of accuracy.

6. We can do a change of variables so that the unit eigenvector directions correspond
to the x-direction, y-direction, etc.
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How do we do it? APPLICATION: PRINCIPAL COMPONENT ANALYSIS

The standard principal component analysis actually deals with the matrix
1

N − 1
BTB

instead of BTB where N is the number of observations (individuals).

If we use
1

N − 1
BTB, we still get the same eigenvectors as BTB and the eigenvalues are

just the eigenvalues of BTB multiplied by
1

N − 1
.

We use
1

N − 1
BTB instead of BTB because

• If we did not divide by standard deviations, the matrix
1

N − 1
BTB is the covariance

matrix: its diagonal entries give the variance (the squares of the standard devia-
tions) of each variable (age, height, weight) and the off-diagonal entries give the
covariance

• If we did divide by standard deviations, the matrix
1

N − 1
BTB is the correlation

matrix: its off-diagonal entries give correlations between variables.
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THE IDEA OF A DERIVATIVE

The Idea of a Derivative

After completing this section, students should be able to:

• Estimate a derivative of a function at a point from a graph by drawing a tangent
line and finding its slope

• Estimate the derivative of a function at a point from a table of values by finding
an average rate of change

• Sketch the derivative of a function from the graph of the function
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THE IDEA OF A DERIVATIVE

Consider a function y = f (t).

For example, t could represent time in seconds past noon and y could represent the
height of a mosquito in feet over your head. Assume the mosquito is just flying straight
up and down.

Here are some values of y at times t.

t 0 1 2 3 4 5 6 7 8 9 10
y -1 -0.66 0.62 1.8 1.45 -0.77 -3.19 -3.06 0.72 5.51 6.2

The derivative of y = f (t) at a given value of t is its rate of change at that time.

For example, the derivative of y = f (t) at t = 1, represented with the notation f ′(1) (or
d f
dt

or
dy
dt

) is the rate at which the mosquito’s height is changing 1 second after noon.

We can estimate f ′(1) by looking at the difference in y-values per difference in t-values
for t-values near 1, for example from t = 0 to t = 2
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THE IDEA OF A DERIVATIVE

For a more precise estimate of
d f
dt

, we need more data about values of y for values of t
closer to t = 1.
t 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
y -0.97 -0.93 -0.88 -0.82 -0.74 -0.66 -0.57 -0.46 -0.35 -0.22 -0.1

We could get even closer with more refined data.

t 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
y -0.7 -0.69 -0.69 -0.68 -0.67 -0.66 -0.65 -0.64 -0.63 -0.62 -0.61
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THE IDEA OF A DERIVATIVE

Geometrically, these calculations amount to approximating the slope of the function.

We can get a better approximation by zooming in.
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THE IDEA OF A DERIVATIVE

By the time we zoom in this far, the function is looking like a line, so the slope estimate
will give an accurate answer for the rate of change at time t = 1.

350



THE IDEA OF A DERIVATIVE

Another way to estimate the slope of the function at t = 1 from the graph is to draw
its tangent line at t = 1. The tangent line at t = 1 is a line that goes though the point
(t, f (t)) = (1, f (1)) and goes in the same direction as the graph.
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THE IDEA OF A DERIVATIVE

Example. Estimate the derivative of y = f (x) at x = 3 from this table of values.

x 0 3 5 6 9 13
f (x) 72 95 112 77 54 32

Example. Estimate g′(4) from this graph.
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THE IDEA OF A DERIVATIVE

For a function f (x), the derivative f ′(x) is itself a function, which can be evaluated at
any value of x by finding the rate of change of f (x) at that x-value. For example:

• f ′(2) is the rate of change, or slope, of y = f (x) at x = 2

• f ′(3) is the rate of change, or slope, of y = f (x) at x = 3

• f ′(3.2) is the rate of change, or slope, of y = f (x) at x = 3.2

Draw a graph of y = f ′(x) on the empty axes at the right.
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THE IDEA OF A DERIVATIVE

The graphs of several functions f are shown below. For each function, estimate the
slope of the graph of f at various points. From your estimates, sketch graphs of f ′.
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CALCULATING DERIVATIVES

Calculating Derivatives

After completing this section, students should be able to:

• Calculate the derivative of a polynomial

• Calculate the derivative of an exponential function
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CALCULATING DERIVATIVES

1. Derivative of a constant

2. Derivative of f (x) = x
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CALCULATING DERIVATIVES

3. Power Rule

Example. Find the derivatives of these functions:

1. y = x15

2. f (x) = 3√x

3. g(x) = 1
x3.7
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CALCULATING DERIVATIVES

4. Derivative of a constant multiple

Example. Find the derivative of f (x) = 5x3.
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CALCULATING DERIVATIVES

5. Derivative of a sum

6. Derivative of a difference

Example. Find the derivative of y = 7x3
− 5x2 + 4x − 2.

END OF VIDEOS
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Using Derivative Rules CALCULATING DERIVATIVES

Using Derivative Rules

Question. Which of the following are correct?

A. d
dxx4 = 4x3

B. d
dxe0.6x = e0.6x

C. d
dxπ = 0

D. d
dx5 f (x) = 5 d

dx f (x)

E. d
dx
(

f (x) + g(x)
)
= d

dx f (x) + d
dx g(x)

F. d
dx(5x3 + 2x) = 5x2 + 2
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Using Derivative Rules CALCULATING DERIVATIVES

Example. At what x-values is the tangent line of this graph horizontal?

y = x5
− 10x4

− 15x3
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Using Derivative Rules CALCULATING DERIVATIVES

Example. Calculate the derivative: g(t) = 4t2 +
1

4t2

Example. Find the derivative y = 3x
√

x − 2
√

x at x = 1
4.
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Using Derivative Rules CALCULATING DERIVATIVES

Example. Find the derivative of g(z) = ez2 + 2ez + ze2 + ze2
.

363



Derivatives in Python CALCULATING DERIVATIVES

Derivatives in Python

A, B, x = symbols(’A B x’)

diff(x**2 + 3*x, x)

diff( (A*x + B)/(x**3 + x - 2), x)
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Derivatives in Python CALCULATING DERIVATIVES

Example. Calculate
d
dx

(
4x4
−

1
x

)
by hand and then check your answer with Python.

Use a double star ** for exponentiation, and a single star to indicate multiplication.

Use Python to calculate derivatives that we have not yet learned how to do:

(a)
d
dx

sin(x)

(b)
d

dy
(yey) Hint: you can write ey as exp(y). Don’t forget the star to indicate

multiplication.

(c)
d
dz

√

z2 + 5z
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

Functions of Several Variables and Level Curves

After completing this section, students should be able to:

• Match equations of the form z = f (x, y) to graphs of surfaces and graphs of level
curves.

• Describe the graphs of functions of three variables w = f (x, y, z) in terms of the
level curves f (x, y, z) = k
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

Example. Consider the function of two variables f (x, y) =
√

xy

1. What is its domain?
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

For the function f (x, y) =
√

xy ...

2. What are its level curves?
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

For the function f (x, y) =
√

xy ...

3. What does its graph look like?

END OF VIDEO
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

In the last two lessons, we have been working with functions of one variable, such as

f (x) = 3x2
− 2x

In the next few lessons, we will consider functions of more than one variable, such as

f (x, y) = xy + x2 + y

f (x, y, z) = x2 + 2xyz + 3eyz

1. To visualize the function f (x) = x2, how many axes do we need?

2. What does the graph of f (x) = x2 look like?
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

3. What is one point on the graph of f (x, y) = x2 + y2?

4. How many axes would we need to graph f (x, y) = x2 + y2?

5. What does the graph of f (x, y) = x2 + y2 look like?

6. What is one point on the graph of f (x, y, z) = x2 + y2 + z2?

7. How many axes would we need to graph f (x, y, z) = x2 + y2 + z2?

8. What does the graph of f (x, y, z) = x2 + y2 + z2 look like?
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

Definition. A level curve of a surface z = f (x, y) is ...

Definition. A contour map of a surface z = f (x, y) is ...
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

Example. Consider the function of two variables f (x, y) = xy graphed below.

1. What is the equation for the level curve at height 1?

2. What is the equation for the level curve at height -3?

3. What is the equation for the level curve at height 0?
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

4. Graph some the level curves.

5. What dimension is needed to draw the graph the function z = f (x, y)?

6. What dimension is needed to draw the level curves of (x, y)?
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

Example. A contour map for a function f is shown. Use it to estimate the values of
f (−3, 3) and f (3,−2). What can you say about the shape of the graph?

Question. What do the lines in this contour map represent? Where should you go if
you like steep hills? Mountain tops?

375



FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

Example. What type of curve do you get when you intersect the graph of z = (x2
− y)2

with a horizontal plane?

Example. Find the contour map for the surface z = (x2
− y)2.

A. B. C. D.

Example. Find the 3-d graph of the surface z = (x2
− y)2.

1. 2. 3. 4.
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

Match the equations with the contour maps and the surface graphs.

1. z = (x − y)2 2. z = x3 3. z = x2
− y2 4. z = e−(x2+y2)

I. II. III. IV.

A. B. C. E.
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FUNCTIONS OF SEVERAL VARIABLES AND LEVEL CURVES

Functions of 3 or more variables

To visualize functions f (x, y, z) of three variables, it is handy to look at level surfaces.

Example. f (x, y, z) = x2 + y2 + z2

(a) Guess what the level surfaces should look like.

(b) Graph a few level surfaces (e.g. x2 + y2 + z2 = 10, x2 + y2 + z2 = 20, x2 + y2 + z2 = 30)
on a 3-d plot.

Example. f (x, y, z) = x2
− y2 + z2

1. Graph a few level surfaces (e.g. x2
− y2 + z2 = 0, x2

− y2 + z2 = 10, x2
− y2 + z2 = 20)

on a 3-d plot.
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PARTIAL DERIVATIVES

Partial Derivatives

After completing this section, students should be able to:

• Compute partial derivatives.

• Use average rates of change to approximate partial derivatives.

• For functions of two variables, explain the geometric meaning of a partial deriva-
tive as the slope of a tangent line to a curve in the intersection of a surface and a
plane.

379



PARTIAL DERIVATIVES

Example. The wave heights h in the open sea depend on the speed ν of the wind
and the length of time t that the wind has been blowing at that speed. So we write
h = f (ν, t).

1. What is f (40, 20)?

2. If we fix duration at t = 20 hours and
think of g(ν) = f (ν, 20) as a function
of ν, what is the approximate value
of the derivative dg

dν

∣∣∣∣
ν=40

?

3. If we fix wind speed at 40 knots, and
think of k(t) = f (40, t) as a function of
duration t, what is the approximate
value of the derivative dk

dt

∣∣∣
t=20

?
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PARTIAL DERIVATIVES

Definition. For a function f (x, y) defined near (a, b), the partial derivatives of f at (a, b)
are:

fx(a, b) = the derivative of f (x, b) with respect to x when x = a,

i.e. fx(a, b) = d
dx f (x, b)|x=a. We fix y and take the derivative with resect to x.

fy(a, b) = the derivative of f (a, y) with respect to y when y = b

i.e. fx(a, b) = d
dy f (a, y)|y=b. We fix x and take the derivative with resect to y.

Geometrically, f (x, b) can be thought of as

So fx(a, b) = d
dx f (x, b)|x=a can be thought of as
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PARTIAL DERIVATIVES

Note. To compute fx, we just take the derivative with x as our variable, holding all
other variables constant. Similarly for the partial derivative with respect to any other
variable.

Example. f (x, y) = x
y. Find fx(1, 2) and fy(1, 2).
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PARTIAL DERIVATIVES

Notation. There are many notations for partial derivatives, including the following:

fx
∂ f
∂x

∂z
∂x f1 D1 f Dx f

Note. Partial derivatives can also be taken for functions of three or more variables. For
example, if f (x, y, z,w) is a function of 4 variables, then fz(3, 4, 2, 7) means:

END OF VIDEO
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PARTIAL DERIVATIVES

Review. For a function f (x, y) of two variables,

• the partial derivative
∂ f
∂x

means

• the partial derivative
∂ f
∂y

means
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PARTIAL DERIVATIVES

Example. This chart gives the heat index, or perceived temperature I as a function of
actual temperature T and relative humidity h.

(a) What is I(96, 70)?

(b) Estimate
∂I
∂T

(96, 70).

(c) Estimate
∂I
∂h

(96, 70).
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PARTIAL DERIVATIVES

Based on the graph of z = f (x, y) shown

• is
∂ f
∂x

(1, 2) positive, negative, or 0?

• is
∂ f
∂y

(1, 2) positive, negative, or 0?
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PARTIAL DERIVATIVES

Example. Level curves are shown for a function f . Estimate the partial derivatives at
the point P.

(a) fx

(b) fy
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PARTIAL DERIVATIVES

Example. For g(x, y) = 3x2y + 5y2, find
∂g
∂x

at (x, y) = (1, 2).
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PARTIAL DERIVATIVES

Example. For f (x, y, z) = e3xy2
− 2exyz3, find fx, fy, and fz.
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PARTIAL DERIVATIVES

Example. For h(r, s, t) =
s − t

r2 , find hr, hs and ht.
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THE GRADIENT

The Gradient

After completing this section, students should be able to:

• Find the gradient of a function of two or more variables.

• Find the direction of greatest increase for a function and the magnitude of that
increase.

• Describe the relationship between the gradient vector and the level curves of a
function.
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Gradient THE GRADIENT

Gradient

Definition. The gradient of the function f (x, y) at (a, b) is defined as:

∇ f (a, b) =

Example. What is ∇ f (3, 4) for f (x, y) = 2xy + 3y2?
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Gradient THE GRADIENT

Example. For each function, calculate ∇ f (2, 0), ∇ f (2, 2), ∇ f (0, 3), and ∇ f (−2, 4) and
draw these gradient vectors on the contour map.

A. f (x, y) = x2 + y2

B. g(x, y) = x2
− y2

What is the relationship between the gradient vectors and the level curves?
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Facts about the gradient THE GRADIENT

Facts about the gradient

1. The gradient ∇ f points ...

2. The negative of the gradient, −∇ f , points ...

3. The gradient ∇ f is perpendicular to ...
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Facts about the gradient THE GRADIENT

Example. Find ∇ f for f (x, y) = xey
− y, find ∇ f for an arbitrary point (x, y).

Example. The graph of∇ f on the x-y plane drawn below. Use this graph to draw some
of the level curves for f .

Draw a curve along which water would flow.
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Facts about the gradient THE GRADIENT

Example. Below is the graph of some level curves of a function.

(a) Draw the gradient at the point (6.1, 1.1).

(b) Draw the path that water would flow, starting at this point.
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Facts about the gradient THE GRADIENT

Everything we have done so far can also be done for functions of three or more
variables! For f (x, y, z) and a point (x0, y0, z0)

• ∇ f (x0, y0, z0) =

• The direction of greatest increase at the point (x0, y0, z0) is .

• The direction of greatest decrease at the point (x0, y0, z0) is .

• ∇ f (x, y, z) is perpendicular to .

Is there such thing as a gradient for a function of one variable f (x)?
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Facts about the gradient THE GRADIENT

Extra Example. A bug at the point (1, 2) observes that if it moves in the direction of[
1
0

]
, the temperature T(x, y) increases at the rate of 2◦ per centimeter. If it moves in the

direction
[
0
1

]
, the temperature decreases at the rate of 3◦ per centimeter.

(a) In what direction should the bug move if it wants to warm up most rapidly?

(b) In what direction should the bug move if it wants to cool down most rapidly?

(c) In what direction should the bug move if it wants to change the temperature as
little as possible?
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Facts about the gradient THE GRADIENT

Gradient in Python.

399



MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

Maximum and Minimum Values and the Method of Gradient Descent

After completing this section, students should be able to:

• Identify local and absolute maximum and minimum values from a graph.

• Explain the relationship between maximum and minimum points and the gradient.

• Explain the method of gradient descent.
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

Definition. A function f (x, y) has an absolute maximum at a point (a, b) if ...

and f (x, y) has an absolute minimum at (a, b) if ...

The z-value c = f (a, b) is called the maximum (or minimum) and the
point (a, b, c) is called the maximum (or minimum) .
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

Definition. A function f (x, y) has a local maximum at a point (a, b) if ...

and f (x, y) has a local minimum at (a, b) if ...

The z-value c = f (a, b) is called the maximum (or minimum) and the
coordinates (a, b, c) is called the maximum (or minimum) .
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

This same terminology can be used for functions of more than 2 variables, and for
functions of less than two variables.

Example. Use the graph to find the absolute and local max and min points for the
function.

What do you notice about the derivative of f at maximum and minimum points?
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

Example. Use the contour map of the function f (x, y) = 8(3x − x3
− 2y2 + y4) to locate

local and absolute maximum and minimum points for the function.

What do you notice about fx and fy at maximum and minimum points?
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

Here are graphs of the same function f (x, y) = 8(3x − x3
− 2y2 + y4).
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

True or False: If f has a local maximum or minimum at a point (that is not on the
boundary of the domain) then ∇ f = 0 at that point.

True or False: If f has ∇ f = 0 at a point (that is not on the boundary of the domain)
then f has a local maximum or minimum at that point.
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

If we start at the point (0.5, 0.5) and we want to travel to a local max, how could we
use the gradient to guide your path?

If we start at the point (0.5, 0.5) and we want to travel to a local min, how could we use
the gradient to guide your path?

How can we avoid the danger of overshooting?
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

Method of Gradient Descent:

First, establish a step size, a number of steps, and an initial point.

• .

• .

• .
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

Example. Use the method of gradient descent to find the minimum value of f (x, y) =
x2 + y2, using a step size of 0.1, and starting at the point (4, 6).
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Example. Use the method of gradient descent on the function f (x, y) = cos(x)+ sin(y),
starting at the point (1, 1), using a step size of 0.2.
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What are some ways that the method of gradient descent can go wrong?
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

Application: fitting a line to data

Suppose you want to fit a line y = mx + b to this data set:

You could guess a value for m and b, for example, ...

But is this the best fit line?
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MAXIMUM AND MINIMUM VALUES AND THE METHOD OF GRADIENT DESCENT

A standard way to quantify how far off the line is from the points is by taking each
point’s vertical distance from the line and square it.

We can call this the error, or the cost.

For the 100 points in this data set, if we write each point as (xi, yi), then

cost =
100∑
i=1

(yi − (mxi + b))2

We want to find the value of m and b that minimize this cost.

How can we use gradient descent to do this? How many variables does the function
we are minimizing have?

For this problem, we can find an explicit formula for the gradient of the cost function,
in terms of the x and y values of our data set. Find it!
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NEURAL NETWORKS

Neural Networks

After completing this section, students should be able to:

• Describe the structure of a neural network, including the nodes, weights, and
biases.

• Explain how training a neural network is related to optimizing a function of many
variables.
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Machine Learning NEURAL NETWORKS

Machine Learning

Machine learning is often used to detect patterns:

• identify the ocean photos with sharks in them,

• recognize handwritten digits and letters,

• understand speech
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Machine Learning NEURAL NETWORKS

Sometimes a neural network is used.

• The neural network takes some input, e.g. the amount of white vs. black on each
pixel of an image, and produces some output, e.g. a number between 0 and 1 at
the end node, which gives us a level of certainty as to whether the picture contains
a shark or not.

• Each node, or neuron, is connected to each node, or neuron in the next layer. How
many total connections are there in this neural network?

416



Perceptrons NEURAL NETWORKS

Perceptrons

The simplest kind of neuron is a perceptron.

• A perceptron takes several binary inputs (numbers that are 0’s or 1’s) and creates
a binary output (0 or 1). We will think of the output of 1 as firing, and the output
of 0 as not firing.

• The output is determined by the inputs, together with weights and a bias.

• Each connection in has a weight w1,w2,w3,w4, · · ·wn (for n incoming connections),
and the neuron itself has a bias b.

• The perceptron will fire if w1x1+w2x2+w3x3+ · · ·wnxn compares favorably to b, i.e.
w1x1 + w2x2 + w3x3 + · · ·wnxn > −b, i.e. w1x1 + w2x2 + w3x3 + · · ·wnxn + b > 0.
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Perceptrons NEURAL NETWORKS

Example. Rewrite the equation w1x1 +w2x2 +w3x3 + · · ·wnxn + b > 0 in vector notation.

Example. For example, for this perceptron with three inputs,

if the weights are w1 = 5, w2 = 3, w3 = −2, and the bias is b = −4, then determine the
output for various inputs. The first two lines of the table are filled in already.

x1 x2 x3 w1x1 + w2x2 + w3x3 w1x1 + w2x2 + w3x3 + b output
0 1 1 1 -3 0
1 0 0 5 1 1
0 0 1
1 1 1
1 0 1

418



Perceptrons NEURAL NETWORKS

• When we build a neural network out of perceptrons, we have to assign a weight to
each connection and a bias to each perceptron (except possibly to the input layer).

Example. How many weights and biases are there in this network?

Different weights and biases will produce different behavior in the neural network.

A useful neural network is one that has weights and biases so that the final output
successfully performs identification tasks, like picking out the pictures that contain
sharks in them, at least most of the time.

419



Sigmoidal neurons NEURAL NETWORKS

Sigmoidal neurons

• One problem with perceptrons is that small changes in weights or biases can flip a
perceptron’s output from a 0 to a 1 or vice versa, possibly causing drastic changes
downstream. This can make it difficult for the network to ”learn”.

• Sigmoidal neurons give an alternative architecture for which small changes in
weights or biases cause only small changes in outputs.

• Sigmoidal neurons are based on the sigmoid function

σ(z) =
1

1 + e−z
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Sigmoidal neurons NEURAL NETWORKS

• Sigmoidal neurons take as input any number between −∞ and ∞ and output a
number between 0 and 1, according to the rule

output = σ(w⃗ ◦ x⃗ + b)

where w⃗ =
[
w1 w2 · · ·wn

]
is the vector of weights, x⃗ =

[
x1 x2 · · · xn

]
is the vector

of inputs, and b is the bias of the neuron.

This can also be written as
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Sigmoidal neurons NEURAL NETWORKS

Question. Suppose w⃗ ◦ x⃗ + b is a large positive number. What will the output of a
perceptron be? What will be output of a sigmoidal neuron be?

Question. Suppose w⃗ ◦ x⃗ + b is a very negative number. What will the output of a
perceptron be? What will be output of a sigmoidal neuron be?

Question. Suppose w⃗ ◦ x⃗ + b is close to 0. What will the output of a perceptron be?
What will be output of a sigmoidal neuron be?
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Sigmoidal neurons NEURAL NETWORKS

Example. Suppose this neuron is a sigmoidal neuron.

For weights of w1 = 5, w2 = 3, w3 = −2, and a bias of b = −4, determine the output for
the following inputs.

x1 x2 x3 w1x1 + w2x2 + w3x3 w1x1 + w2x2 + w3x3 + b output
0 1 1 1 -3 0.047
1 0 0 5 1 0.731

0.5 0.6 0.9
-5 2 4
0.6 0.3 0.1
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ReLU Neurons

Some neural networks use Rectified Linear Unit (ReLU) functions instead of sigmoidal
functions.

• A typical ReLU function is

f (z) = max(0, z)

• ReLU functions have the advantage of being easier to compute than sigmoidal
functions, but the disadvantage that they are not differentiable everywhere. .
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Building a Neural Network

To build a neural network to perform a task we need to:

• Decide on the network ”architecture”, that is ...

• Find weights and biases that work.

– This is done using a training data set, where you have the inputs labeled with
the desired outputs, e.g. lots of pictures with and without sharks and the
answers for whether they contain sharks or not.

– We have to define a cost function (error function) that is small when the weights
and biases give us good output, and large when the weights and biases give us
lousy output

– We look for weights and biases that minimize cost using ...
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Handwritten Digit Recognition

There is a database called MNIST that contains 60,000 images of handwritten digits,
all on 28 x 28 pixel grids, plus a separate 10,000 digits for testing purposes. Suppose
we want to build a neural network to recognize handwritten digits, and train it on the
60,000 examples.

Question. How many input neurons should our network have?

Question. How many output neurons would it be reasonable for our network to have?
(Hint: would one output neuron be enough to distinguish the digits 0, 1, 2, ... 9?)

Question. Note that our final output will be numbers between 0 and 1 (assuming we
are using sigmoidal neurons), and not necessarily numbers equal to 0 or 1. There will
be one number per output neuron. How do we turn that into an answer, like ”This is
the digit 4!”.
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Handwritten Digit Recognition NEURAL NETWORKS

• In addition to deciding on the number of input neurons and output neurons, we
need to decide how many ”hidden layers” of neurons to use, and how many
neurons to put in each layer.

• We will go with one hidden layer of 15 neurons, following the example in the
3Blue1Brown vidso. This is a fairly arbitrary choice.

Example. How many weights and biases will there be in our neural network?
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Evaluating the Error, or Cost

Question. Suppose I set all my weights and biases at random or according to some
simple rule, and you set the all a different way. How can we decide whose neural
network does a better job of recognizing handwritten digits?

Hint: For a fixed set of weights and biases, we need a ”cost function” (or ”error
function” or ”objective function”) that will give a score for how bad our neural network
is doing on our training data set. A high cost will mean the neural net sucks, and a
low cost will mean it is pretty good.
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Evaluating the Error, or Cost NEURAL NETWORKS

Example. Suppose my training set contains only the following three images, and my
neural net gives the following output:

. .

and gives the following outputs:

0 0.37
1 0.52
2 0.71
3 0.21
4 0.17
5 0.55
6 0.13
7 0.68
8 0.22
9 0.11

0 0.44
1 0.17
2 0.53
3 0.89
4 0.17
5 0.46
6 0.09
7 0.24
8 0.82
9 0.31

0 0.25
1 0.47
2 0.16
3 0.27
4 0.22
5 0.13
6 0.08
7 0.56
8 0.33
9 0.75

Evaluate the cost function on this output.

429



Evaluating the Error, or Cost NEURAL NETWORKS

Example. If your neural network gives the following outputs, instead, whose network
is doing a better job of recognizing digits?

0 0.27
1 0.62
2 0.81
3 0.31
4 0.27
5 0.65
6 0.23
7 0.58
8 0.12
9 0.31

0 0.54
1 0.47
2 0.63
3 0.79
4 0.27
5 0.56
6 0.19
7 0.34
8 0.62
9 0.41

0 0.35
1 0.37
2 0.26
3 0.17
4 0.12
5 0.23
6 0.18
7 0.46
8 0.23
9 0.65
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Writing down the cost function NEURAL NETWORKS

Writing down the cost function

The cost function is supposed to be a function of the weights and biases. Even writing
it down can be cumbersome!

Suppose we call the activations in the neurons in the input level a(0)
0 , a

(0)
1 , . . . a

(0)
n0

and the
activations in the first hidden layer a(1)

0 , a
(1)
1 , a

(1)
2 , . . . a

(1)
n1

.

Suppose we refer to the weight for the connection between a(0)
i and a(1)

j as w(0)
ji , and the

bias for a(1)
k as b(1)

k .

Then we can relate, say, a(1)
0 to the input neuron activations, weights, and biases by the

dot product:
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and we can relate all activations on hidden layer 1 to the activations for the input layer
by the matrix product and sum:

This yeilds the ultra compact notation:

a⃗(1) =W(0)a⃗(0) + b⃗(1)
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